
Abstract: Banana French Fries This project aimed to study and develop the product Banana French Fries, which is a snack made by frying bananas in a form similar to French fries, in order to add value to bananas and create new choices for consumers. The experiment consisted of selecting suitable banana varieties, developing a coating formula, and testing the taste of samples. The results of the study found that Nam Wa bananas are the most suitable for making banana French fries because they have a firm texture and naturally sweet taste. The best coating formula consists of wheat flour, eggs, and milk, which provide longer crispiness. The taste test found that most consumers gave a very good response and were satisfied with the taste and texture. This project shows that banana French fries are a product with potential to be developed as a healthy snack and can be further developed into a commercial product in the future.
เปลี่ยนจากการบริโภคมันฝรั่งจากเดิมให้มีความแตกต่างจากปกติให้ลูกค้ากลุ่มใหม่ได้รับประทานผลิตภัณฑ์รูปแบบใหม่จากล้วยและได้ช่วยให้เกษตรกรได้มีรายได้ในส่วนนี้ด้วย

คณะวิศวกรรมศาสตร์
This project focuses on developing a test device for an AC charger for electric vehicles according to the IEC 61851-1 Annex A standard by simulating the test circuit inside an electric vehicle according to the standard to test the operation of the AC charger. The test topic is related to the communication between the electric vehicle and the charger via a Pulse Width Modulation (PWM) control circuit system and creating an operation manual (WI) to prepare for testing in accordance with ISO/IEC 17025 standards, which are general requirements for laboratory capabilities in conducting tests and/or calibrations. The overall picture of this project is to develop test equipment and create an operation manual by collecting knowledge and various devices and then comparing the data to meet the abovementioned standards to test the Type II AC charger in each state. The test equipment consists of a communication part between the test equipment and the AC charger using a PLC S7-1200 and an HMI to control the operation of the switches in the test equipment circuit, including controlling parameters and displaying results. The equipment used to measure values is an oscilloscope and a multimeter that have undergone a calibration process to comply with the specified standards.

คณะอุตสาหกรรมอาหาร
Bio-calcium powders were extracted from Asian sea bass bone by heat-treated alkaline with fat removal and bleaching supplementary method. Cereal bars (CBs) were fortified with produced bio-calcium at 3 levels: (1) increased calcium (IS-Ca; calcium ≥10% Thai RDI), (2) good source of calcium (GS-Ca; calcium ≥15% Thai RDI), and (3) high calcium (H-Ca; calcium ≥30% Thai RDI) which were consistent with the notification of the Ministry of Public Health, Thailand: No. 445; Nutrition claim issued in B.E. 2023. Moisture content, water activity, color, calcium content and FTIR analysis of bio-calcium powders were measured. Dimension, color, water activity, pH and texture of fortified CBs were determined. Produced bio-calcium could be classified as a dried food with light yellow-white color. Calcium contents in bio-calcium powder was 23.4% (w/w). Dimension, weight and color except b* and ΔE* values of fortified CBs were not different (P > 0.05) from those of the control. Fortifying of bio-calcium resulted in harder texture CBs. An increase of fortified bio-calcium amounts decreased carbohydrate and fat but increased of protein, ash and calcium in the fortified CBs. Shelf life of CBs was to be shorten by fortification of bio-calcium powder because of the increment of moisture, water activity and pH. Yield of bio-calcium production was 40.30%. Production cost of bio-calcium was approximately 7,416 Bth/kg while cost of fortified CBs increased almost 2-3 times compared to the control. Calcium contents in IS-Ca (921.12 mg/100g), GS-Ca (1,287.10 mg/100g) and H-Ca (2,639.70 mg/100g) cereal bars could be claimed as increased calcium, good source of calcium and high calcium, respectively. In conclusion, production of cereal bar fortified with Asian sea bass bone bio-calcium powder as a fortified food was possible. However, checking the remained hazardous reagents in bio-calcium powder must be carried out before using in food products and analysis of calcium bioavailability, sensory acceptance and shelf life of the developed products should be determined in further studies.

คณะวิศวกรรมศาสตร์
Motor control is a critical process for muscle contraction, which is initiated by nerve impulses governed by the motor cortex. This process is vital for performing activities of daily living (ADLs). Consequently, a disruption in communication between the brain and muscles, as seen in various chronic conditions and diseases, can impair bodily movement and ADLs. Evaluating the interaction between brain function and motor control is significant for the diagnosis and treatment of motor control disorders; moreover, it can contribute to the development of brain-computer interfaces (BCIs). The purpose of this study is to investigate brain activation in designed upper extremity motor control tasks in regulating the pushing force in different brain regions; and develop investigation methods to assess motor control tasks and brain activation using a robotic arm to guide upper extremity force and motor control. Eighteen healthy young adults were asked to perform upper extremity motor control tasks and recorded the hemodynamic signals. Functional Near-Infrared Spectroscopy (fNIRs) and robotic arms were used to assess brain activation and the regulation of pushing force and extremity motor control. Two types of motion, static and dynamic, move along a designated trajectory in both forward and backward directions, and three different force levels selected from a range of ADLs, including 4, 12, and 20 N, were used as force-regulating upper extremity motor control tasks. The hemodynamic responses were measured in specific regions of interest, namely the primary motor cortex (M1), premotor cortex (PMC), supplementary motor area (SMA), and prefrontal cortex (PFC). Utilizing a two-way repeated measures ANOVA with Bonferroni correction (p < 0.00625) across all regions, we observed no significant interaction effect between force levels and movement types on oxygenated hemoglobin (HbO) levels. However, in both contralateral (c) and ipsilateral (i) PFC, movement type—static versus dynamic—significantly affected brain activation. Additionally, cM1, iPFC, and PMC showed a significant effect of force level on brain activation.