KMITL Innovation Expo 2025 Logo

Artifical intelligence for agriculture and enviroment

Abstract

Artificial intelligence for agriculture and environment is a collection of significant models for enviromental friendly Thailand development. The models create with machine learning and deep learning by Near infrared spectroscopy research center for agricultural and food products, including: Determining the nutrient needs (N P K) of durian trees by measuring durian leaves using a non-destructive technique using artificial intelligence, Identification of combustion properties of biomass from fast-growing trees and agricultural residues using non-destructive techniques combined with artificial intelligence, and Evaluation of global warming due to biomass combustion using non-destructive techniques using artificial intelligence. The basic technology used is Near infrared Fourier transform spectroscopy technology which measurement and output display can be done quickly without chemical, no requirement for special expert, and measurement price per sample is very low. But the instrument cannot be produced in Thailand.

Objective

ความเจริญก้าวหน้าทางวิชาการจะเป็นจริงเมื่อผลงานทางวิชาการถูกนำไปใช้ได้จริงในระบบการผลิตซึ่งมีนัยสำคัญทางเศรษฐกิจของประเทศ จึงได้นำผลงานของนักศึกษาและคณาจารย์ของศูนย์วิจัยเนียร์อินฟราเรดสเปกโทรสโกปีสำหรับผลิตผลเกษตรและอาหาร มานำเสนอในงานจัดแสดงนวัตกรรม KMITL Innovation Expo 2025 ในวันพฤหัสบดี 6 ถึง วันเสาร์ 8 มีนาคม 2568 ณ หอประชุมเจ้าพระยาสุรวงษ์ไวยวัฒน์ (วร บุนนาค) สจล. ซึ่งเป็นโอกาสดีของศูนย์วิจัยเนียร์อินฟราเรดสเปกโทรสโกปีสำหรับผลิตผลเกษตรและอาหารในการเปิดเผยผลงานทางวิชาการสำคัญซึ่งมีแนวโน้มสามารถนำไปใช้ได้จริงต่อสังคมเกษตรกรรมและสิ่งแวดล้อมเพื่อการพัฒนาประเทศ

Other Innovations

Urban Farming Innovation Learning Center

คณะสถาปัตยกรรม ศิลปะและการออกแบบ

Urban Farming Innovation Learning Center

From the current situation and uncertainty; leads to the concept of food security. It is the application of innovation and technology to create high productivity in a limited area. The unused buildings in urban areas were renovated for planting, created as a learning area for planting in urban area. The different methods of growing plants were presented. There are 35 planting innovations for disseminating knowledge, to create food security, self-reliant, supports sustainable living.

Read more
Self Doubt

คณะสถาปัตยกรรม ศิลปะและการออกแบบ

Self Doubt

A Photographic series that expresses the abstract states of myself, towards the question of existence that results from being surrounded by expectations of both surrender and freedom of expression, this series focuses on my own subjectivities in order to bring back memories of almost forgotten feelings and make them clear once more.

Read more
Investigation variable star classification through light curve analysis using machine learning approach

คณะวิทยาศาสตร์

Investigation variable star classification through light curve analysis using machine learning approach

With the development of space technology, wide-field sky surveys using telescopes have expanded the range of new data available for time-domain astronomical research. Traditional data analysis methods can no longer respond quickly and accurately enough to the growing volume of data. Thus, classifying time-series data, such as light curves, has become a significant challenge in the era of big data. In modern times, analyzing light curves has become essential for using machine learning techniques to handle and filter through massive amounts of data. Machine learning algorithms can be divided into two categories: shallow learning and deep learning. Numerous researchers have proposed and developed a variety of algorithms for light curve classification. In this study, we experimented with Support Vector Machine (SVM) and XGBoost, which are shallow machine learning algorithms, as well as 1D-CNN and Long Short-Term Memory (LSTM), which are deep learning algorithms, which are branches of deep machine learning, to classify variable stars. The training and testing data used in this study were from the Optical Gravitational Lensing Experiment-III (OGLE-III), consisting of variable star data from the Large Magellanic Cloud (LMC), categorized into five main classes: Classical Cepheids, δ Scutis, eclipsing binaries, RR Lyrae stars, and Long-period variables. The results demonstrate the performance analysis of each machine learning algorithm type applied to light curve data, while also highlighting the accuracy and statistical metrics of the algorithms used in the experiments.

Read more