KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

AI-Powered Security & Consumer Analytics, Integrating AI Vision for Enhanced Security and Consumer Behavior Insights in the Digital Era

AI-Powered Security & Consumer Analytics, Integrating AI Vision for Enhanced Security and Consumer Behavior Insights in the Digital Era

Abstract

In the digital era, Artificial Intelligence (AI) plays a crucial role in developing smart cities and enhancing business operations. Among AI-driven technologies, AI Vision Analytics has gained significant attention for Access Control Systems (ACS) and Consumer Behavior Analytics. This research focuses on integrating AI Access Control and AI Video Analytics to examine factors influencing Technology Adoption Behavior using the UTAUT2 (Unified Theory of Acceptance and Use of Technology 2) framework. Key factors assessed include Trust in Technology, Effort Expectancy, Social Influence, and Performance Expectancy, which impact users’ willingness to adopt AI-driven security and analytics solutions. The study also includes a real-world implementation of AI Vision Analytics at KMITL EXPO, where an AI-powered Access Control System and AI Video Analytics are deployed. The collected data is analyzed to identify trends in AI adoption for business management and security enhancement. The findings provide valuable insights for businesses and organizations to optimize AI Vision Analytics for enhancing security management and digital marketing strategies.

Objective

ในยุคดิจิทัล เทคโนโลยีปัญญาประดิษฐ์ (Artificial Intelligence - AI) ได้เข้ามามีบทบาทสำคัญในการเปลี่ยนแปลงวิธีการดำเนินธุรกิจและการบริหารจัดการความปลอดภัย โดยเฉพาะ AI Vision Analytics ที่สามารถนำมาประยุกต์ใช้ในหลายด้าน เช่น การควบคุมการเข้าถึงสถานที่ (Access Control System - ACS) และ การวิเคราะห์พฤติกรรมผู้บริโภค (Consumer Behavior Analytics) โดย Access Control System (ACS) ช่วยให้สถานที่มีความปลอดภัยยิ่งขึ้น โดยใช้ AI ในการ จดจำใบหน้า (Face Recognition), ตรวจสอบป้ายทะเบียน (License Plate Recognition - LPR) และติดตามการเข้า-ออกในพื้นที่ต่างๆ ซึ่งช่วยลดความเสี่ยงด้านความปลอดภัยและเพิ่มความสะดวกให้กับผู้ใช้ และระบบ AI Video Analytics ช่วยให้ธุรกิจสามารถ วิเคราะห์พฤติกรรมของลูกค้า (Consumer Insights) ผ่านการติดตามความเคลื่อนไหวของผู้บริโภค เช่น Heat Map, Dwell Time, และ Customer Flow Analysis ซึ่งสามารถนำไปใช้เพื่อปรับปรุงกลยุทธ์การตลาดและการให้บริการ ทั้งนี้แม้ว่า AI Vision Analytics จะมีศักยภาพสูง แต่ การยอมรับเทคโนโลยี (Technology Adoption) ยังเป็นประเด็นสำคัญที่ต้องศึกษา เนื่องจาก ความเป็นส่วนตัว (Privacy Concerns), ความเชื่อมั่นในเทคโนโลยี (Trust in Technology), และต้นทุนในการติดตั้ง อาจเป็นอุปสรรคต่อการใช้งาน ดังนั้น งานวิจัยนี้จึงมุ่งเน้น การศึกษาปัจจัยที่มีผลต่อพฤติกรรมการยอมรับเทคโนโลยี AI Vision โดยใช้กรอบแนวคิด UTAUT2 (Unified Theory of Acceptance and Use of Technology 2) เพื่อวิเคราะห์ว่า ผู้ใช้มีความเต็มใจแค่ไหนในการใช้งานระบบ AI ที่เกี่ยวข้องกับความปลอดภัยและการตลาด

Other Innovations

HEALTHCARE SYSTEM FOR GERIATRIC SCREENING IN ELDERLY CANCER PATIENTS

คณะเทคโนโลยีสารสนเทศ

HEALTHCARE SYSTEM FOR GERIATRIC SCREENING IN ELDERLY CANCER PATIENTS

Cancer is one of the major health issues in Thailand, particularly as the country enters an aging society. The risk of chronic diseases among the elderly often results in limitations in treatment, making it difficult for most patients to achieve a complete recovery. This necessitates continuous care and the provision of accurate information and guidance about cancer. However, current health record systems for patients lack effective interconnectivity, which hinders data analysis and the development of patient care models. Additionally, incorrect information about cancer spread across social media can lead to misunderstandings among elderly patients. To address these issues, researchers have developed a chatbot system that utilizes Natural Language Processing (NLP) technology to understand human language and accurately respond to questions about elderly cancer patient care. The chatbot provides reliable and up-to-date information based on medical knowledge sourced from a database reviewed by healthcare professionals. Furthermore, a web application has been developed to record and analyze patient assessments according to medical standards, enabling healthcare providers to plan and develop appropriate treatment approaches in a better way. This system also facilitates data sharing and connectivity across hospital systems, allowing information to be used to enhance the precision and modernity of treatment approaches. In addition, the chatbot acts as an assistant, providing information and guidance to patients, reducing the workload of healthcare staff in answering questions and encouraging patients to take a more active role in managing their own health.

Read more
Center of Invention for Future and Sustainability

คณะสถาปัตยกรรม ศิลปะและการออกแบบ

Center of Invention for Future and Sustainability

The " Center of Invention for Future and Sustainability Project (Continuing)" serves as a continuation of a pilot initiative focused on the retrofitting of older buildings (Vach. 7), specifically a five-story structure. The primary aim of this project is to develop methodologies for enhancing the sustainability of existing buildings in order to mitigate carbon dioxide emissions. In the execution of the Future and Sustainability Innovation Development Center Project (Continuing), a comprehensive analysis of relevant data and theoretical frameworks has been undertaken, leading to the formulation of a research methodology designed to identify optimal strategies for retrofitting older buildings to reduce carbon dioxide emissions. This approach is structured into three principal phases: the combustion of fuels associated with transportation, labor, and materials; the electricity consumption during the construction process; and the accumulation of greenhouse gases from both existing and new construction materials. The project employs an experimental research design, wherein empirical data is collected to evaluate and quantify the equivalent carbon dioxide emissions arising from the construction of new buildings compared to the retrofitting of the selected case study building. Subsequent analysis of the collected data revealed that retrofitting the existing structure—through the integration of sustainable design principles—resulted in greenhouse gas emissions of 11.88 kgCO2e/sq.m. In contrast, the emissions associated with new building construction amounted to 299.35 kgCO2e/sq.m., indicating a reduction in carbon dioxide emissions by a factor of approximately 26 when compared to the construction of new buildings.

Read more
000

คณะสถาปัตยกรรม ศิลปะและการออกแบบ

000

-

Read more