KMITL Innovation Expo 2025 Logo

การประยุกต์ใช้กระบวนการทางคอมพิวเตอร์เพื่อค้นหาสารประกอบที่ยับยั้ง TIGIT ซึ่งเป็น immune checkpoint molecule สำหรับภูมิคุ้มกันบำบัดมะเร็ง: การคัดกรองด้วยกระบวนการทางคอมพิวเตอร์ การศึกษาการจับตัว และการวิเคราะห์พลวัตระดับโมเลกุล

รายละเอียด

มะเร็งยังคงเป็นอีกหนึ่งปัญหาด้านสุขภาพที่สำคัญระดับโลก โดยเป็นสาเหตุการเสียชีวิตอันดับสองของคนทั่วโลก ในปัจจุบันนอกเหนือจากการผ่าตัดรักษาโรคมะเร็งแล้ว ยังมีการรักษามะเร็งด้วยวิธีต่างๆ ได้แก่ การฉายรังสี และเคมีบำบัด อย่างไรก็ตามการรักษาด้วยวิธีดังกล่าวทำให้เกิดผลข้างเคียงที่รุนแรงต่อผู้ป่วยได้ เนื่องจากทั้งเซลล์มะเร็งและเซลล์ปกติต่างถูกกำจัดไปพร้อมกัน ดังนั้นจึงมีการใช้โมโนโคลนอลแอนติบอดีที่สามารถจับกับโมเลกุลที่มะเร็งใช้ยับยั้งภูมิคุ้มกันของร่างกาย (immune checkpoint molecule) โดยเฉพาะอย่างยิ่ง TIGIT/PVR (T-cell immunoglobulin and ITIM domain/poliovirus receptor) ซึ่งเป็นโมเลกุลที่เป็นเป้าหมายในการการพัฒนายารักษามะเร็ง การใช้โมโนโคลนอลแอนติบอดีในการยับยั้ง TIGIT แม้จะมีประสิทธิภาพในการรักษาที่ดี แต่จากการทดลองในผู้ป่วยพบว่าสามารถเกิดผลข้างเคียงจากการใช้แอนติบอดีและไปขัดขวางการทำงานตามปกติของร่างกาย และแอนติบอดีมีต้นทุนในการผลิตที่สูง ดังนั้นเพื่อแก้ไขปัญหาเหล่านี้ จึงมีการใช้สารประกอบขนาดเล็กแทน ซึ่งมีข้อดีในเรื่องของความสามารถในการดูดซึมเข้าสู่กระแสเลือดผ่านการรับประทานเข้าไปและคาดว่าสามารถจัดการเนื้องอกได้ดีกว่าโมโนโคลนอลแอนติบอดีเนื่องจากมีขนาดที่เล็กกว่า โดยในการทดลองนี้เราศึกษาตัวยาที่มีความสามารถในการจับกับ TIGIT โดยคัดกรองจากตัวยาที่ผ่านการอนุมัติจาก FDA (Food and Drug Administration) ผ่านวิธี virtual screening และ molecular docking ได้สารประกอบ 100 ตัว และนำมาคัดกรองต่อจนเหลือ 10 ตัว ซึ่งมีค่าความสามารถในการจับ TIGIT อยู่ในช่วง -9.152 to -7.643 kcal/mol จากนั้นสารประกอบเหล่านี้จะถูกประเมินคุณสมบัติทางเภสัชจลนศาสตร์โดยใช้การวิเคราะห์ ADMET (Absorption, Distribution, Metabolism, Excretion, และ Toxicity) เพื่อแสดงให้เห็นว่าตัวยาแต่ละตัวมีคุณสมบัติที่เหมาะสมสำหรับการใช้เป็นยา สารประกอบที่ผ่านเกณฑ์จะถูกวิเคราะห์ต่อโดยคาดคะเนการเปลี่ยนแปลงทางโครงสร้างและความเสถียรในการจับกับ TIGIT ผ่านการใช้ molecular dynamics (MD) เพื่อให้มั่นใจว่าโครงสร้างของโปรตีนจะไม่เปลี่ยนแปลงไป การศึกษานี้แสดงให้เห็นว่าการใช้วิธีการทางคอมพิวเตอร์และการนำยากลับมาใช้ใหม่ (Drug repurposing) สามารถเป็นแนวทางในการค้นหายาที่มีประสิทธิภาพ ซึ่งจะช่วยเร่งกระบวนการพัฒนายารักษามะเร็งใหม่ได้รวดเร็วขึ้น

วัตถุประสงค์

Cancer remains one of the leading causes of mortality worldwide, driven by its complex and multifactorial origins. The numerous factors contributing to cancer onset complicate the identification of specific triggers, posing significant challenges for treatment. Despite advancements in therapeutic options, no cure guarantees complete remission, and treatment strategies vary depending on the individual and disease stage. Current modalities, including radiation therapy, chemotherapy, and surgery, are often limited by efficacy and adverse side effects. Cancer immunotherapy has emerged as a promising alternative, targeting immune checkpoints—key regulators of immune cell activity. Immune checkpoint molecules such as programmed cell death protein 1 (PD-1), lymphocyte-activation gene 3 (LAG-3), T-cell immunoglobulin and mucin-domain containing-3 (TIM-3), and T-cell immunoreceptor with Ig and ITIM domains (TIGIT) have become critical therapeutic targets. Monoclonal antibody-based drugs designed to block these pathways have demonstrated significant clinical success. However, the clinical translation of antibody-based immune checkpoint inhibitors remains limited due to immunogenicity, immune-related side effects, and high production costs. Additionally, their large molecular size restricts tumor tissue penetration, and their relatively long half-life can cause serious side effects by prolonging drug retention and complicating elimination. To overcome these limitations, advancements in computational drug discovery—including virtual screening, molecular docking, and molecular dynamics simulations—enable the efficient identification of potential small-molecule inhibitors that can bind to immune checkpoint targets and disrupt their interactions. These in silico techniques have become essential tools in modern drug development, offering rapid, cost-effective, and high-throughput screening methods for identifying promising drug candidates. In this study, we utilized in silico drug screening using FDA-approved drug libraries which were selected against a next-generation immune checkpoint TIGIT through structure-based virtual screening and molecular docking analysis. Additionally, the screened compounds demonstrated favorable drug-like properties, as assessed by ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) analysis. Collectively, this study represents the potential of computational approaches to accelerate drug screening process. Using these approaches, we identified the lead compounds that can target TIGIT molecule which can be potentially used for cancer treatment.

นวัตกรรมอื่น ๆ

หุ่นยนต์นำทางและโต้ตอบอัจฉริยะ

คณะวิศวกรรมศาสตร์

หุ่นยนต์นำทางและโต้ตอบอัจฉริยะ

การบูรณาการระบบหุ่นยนต์อัจฉริยะเข้าสู่สภาพแวดล้อมที่มุ่งเน้นมนุษย์ เช่น ห้องปฏิบัติการ โรงพยาบาล และสถาบันการศึกษา มีความสำคัญมากขึ้นเนื่องจากความต้องการที่เพิ่มขึ้นสำหรับผู้ช่วยที่เข้าถึงได้และตระหนักถึงบริบท อย่างไรก็ตาม โซลูชันในปัจจุบันมักขาดความสามารถในการปรับขนาด เช่น การพึ่งพาบุคลากรเฉพาะทางเพื่อตอบคำถามเดิมซ้ำๆ ในฐานะผู้ดูแลระบบของแผนกเฉพาะ และการขาดความสามารถในการปรับตัวให้เข้ากับสภาพแวดล้อมแบบไดนามิกที่ต้องการการตอบสนองตามสถานการณ์แบบเรียลไทม์ งานวิจัยนี้นำเสนอกรอบแนวคิดใหม่สำหรับผู้ช่วยหุ่นยนต์เชิงโต้ตอบ (Beckerle et al., 2017) ที่ออกแบบมาเพื่อช่วยในระหว่างการเยี่ยมชมห้องปฏิบัติการและบรรเทาความท้าทายที่เกิดจากข้อจำกัดด้านทรัพยากรบุคคลในการให้ข้อมูลที่ครอบคลุมแก่ผู้เยี่ยมชม ระบบที่นำเสนอทำงานผ่านหลายโหมด รวมถึงโหมดสแตนด์บายและโหมดจดจำ เพื่อให้แน่ใจว่ามีการโต้ตอบที่ราบรื่นและสามารถปรับตัวได้ในบริบทต่างๆ ในโหมดสแตนด์บาย หุ่นยนต์จะแสดงสัญญาณความพร้อมผ่านแอนิเมชันใบหน้ายิ้มขณะลาดตระเวนตามเส้นทางที่กำหนดไว้ล่วงหน้าหรือประหยัดพลังงานเมื่อต้องหยุดนิ่ง การตรวจจับสิ่งกีดขวางขั้นสูงช่วยให้มั่นใจในความปลอดภัยขณะเคลื่อนที่ในสภาพแวดล้อมแบบไดนามิก ส่วนโหมดจดจำจะเปิดใช้งานผ่านท่าทางหรือคำปลุก โดยใช้เทคโนโลยีวิชันคอมพิวเตอร์ขั้นสูงและระบบรู้จำเสียงพูดแบบเรียลไทม์เพื่อตรวจจับผู้ใช้ การจดจำใบหน้าช่วยจำแนกบุคคลว่าเป็นที่รู้จักหรือไม่รู้จัก พร้อมทั้งมอบคำทักทายเฉพาะบุคคลหรือคำแนะนำตามบริบทเพื่อเพิ่มการมีส่วนร่วมของผู้ใช้ หุ่นยนต์ต้นแบบและการออกแบบ 3 มิติแสดงไว้ในรูปที่ 1 ในโหมดโต้ตอบ ระบบได้บูรณาการเทคโนโลยีขั้นสูงหลายประการ เช่น การรู้จำเสียงพูดขั้นสูง (ASR Whisper) การประมวลผลภาษาธรรมชาติ (NLP) และโมเดลภาษาขนาดใหญ่ Ollama 3.2 (LLM Predictor, 2025) เพื่อมอบประสบการณ์ที่ใช้งานง่าย รับรู้บริบท และสามารถปรับตัวได้ โดยได้รับแรงบันดาลใจจากความต้องการมีส่วนร่วมกับนักศึกษาและส่งเสริมความสนใจในภาควิชา RAI ซึ่งมีผู้เยี่ยมชมมากกว่า 1,000 คนต่อปี ระบบนี้ช่วยแก้ไขปัญหาการเข้าถึงข้อมูลในกรณีที่ไม่มีเจ้าหน้าที่มนุษย์ ด้วยการตรวจจับคำปลุก การจดจำใบหน้าและท่าทาง และการตรวจจับสิ่งกีดขวางด้วย LiDAR หุ่นยนต์จึงสามารถสื่อสารภาษาอังกฤษได้อย่างราบรื่น พร้อมทั้งนำทางอย่างปลอดภัยและมีประสิทธิภาพ ระบบปฏิสัมพันธ์แบบ Retrieval-Augmented Generation (RAG) สื่อสารกับหุ่นยนต์เคลื่อนที่ที่สร้างบน ROS1 Noetic โดยใช้โปรโตคอล MQTT ผ่านเครือข่าย Ethernet ระบบนี้เผยแพร่เป้าหมายการนำทางไปยังโมดูล move_base ใน ROS ซึ่งจัดการการนำทางและหลีกเลี่ยงสิ่งกีดขวางโดยอัตโนมัติ แผนผังอธิบายระบบแสดงไว้ในรูปที่ 2 กรอบแนวคิดนี้ประกอบด้วยสถาปัตยกรรมแบ็กเอนด์ที่แข็งแกร่ง โดยใช้ MongoDB สำหรับการจัดเก็บและดึงข้อมูล รวมถึงกลไก RAG (Thüs et al., 2024) ในการประมวลผลข้อมูลหลักสูตรในรูปแบบ PDF เพื่อให้แน่ใจว่าหุ่นยนต์สามารถให้คำตอบที่ถูกต้องและเหมาะสมกับบริบทแก่ผู้ใช้ นอกจากนี้ การใช้แอนิเมชันใบหน้ายิ้มและระบบแปลงข้อความเป็นเสียง (TTS BotNoi) ยังช่วยเพิ่มอัตราการมีส่วนร่วมของผู้ใช้ ผลลัพธ์จากการศึกษาสังเกตการณ์และแบบสำรวจพบว่าระบบมีการปรับปรุงอย่างมีนัยสำคัญในด้านความพึงพอใจของผู้ใช้และการเข้าถึงข้อมูล เอกสารฉบับนี้ยังกล่าวถึงความสามารถของหุ่นยนต์ในการทำงานในสภาพแวดล้อมแบบไดนามิกและพื้นที่ที่เน้นมนุษย์ เช่น การจัดการกับการรบกวนระหว่างปฏิบัติภารกิจ การออกแบบแบบแยกส่วนช่วยให้สามารถผสานรวมฟีเจอร์เพิ่มเติม เช่น การจดจำท่าทางและการอัปเกรดฮาร์ดแวร์ได้ง่าย ซึ่งช่วยให้ระบบสามารถขยายขีดความสามารถในระยะยาวได้ อย่างไรก็ตาม มีข้อจำกัดบางประการ เช่น ต้นทุนการติดตั้งเริ่มต้นที่สูงและการพึ่งพาการกำหนดค่าฮาร์ดแวร์เฉพาะ ในอนาคต งานวิจัยจะมุ่งเน้นไปที่การเพิ่มความสามารถในการรองรับภาษาต่างๆ การขยายกรณีการใช้งาน และการสำรวจปฏิสัมพันธ์แบบร่วมมือกันระหว่างหุ่นยนต์หลายตัว โดยสรุป ผู้ช่วยหุ่นยนต์เชิงโต้ตอบที่นำเสนอในงานวิจัยนี้เป็นก้าวสำคัญในการเชื่อมโยงความต้องการของมนุษย์เข้ากับความก้าวหน้าทางเทคโนโลยี ด้วยการผสานรวมเทคโนโลยีปัญญาประดิษฐ์ล้ำสมัยเข้ากับโซลูชันฮาร์ดแวร์ที่ใช้งานได้จริง งานวิจัยนี้จึงนำเสนอระบบที่สามารถขยายขีดความสามารถ มีประสิทธิภาพ และเป็นมิตรกับผู้ใช้ ซึ่งช่วยเพิ่มการเข้าถึงข้อมูลและการมีส่วนร่วมของผู้ใช้ในสภาพแวดล้อมที่มุ่งเน้นมนุษย์

เครื่องวัดระดับคาร์บอนมอนอกไซด์ในลมหายใจพร้อมการตอบสนองด้วยเสียง

คณะบริหารธุรกิจ

เครื่องวัดระดับคาร์บอนมอนอกไซด์ในลมหายใจพร้อมการตอบสนองด้วยเสียง

เครื่องวัดระดับคาร์บอนมอนอกไซด์ในลมหายใจพร้อมการตอบสนองด้วยเสียงเพื่อวัดระดับคาร์บอนมอนอกไซด์ที่ตกค้างในปอดของผู้ที่มีการใช้ยาสูบ ซึ่งเป็นการบอกระดับการติดยาสูบแทนที่จะวัดระดับนิโคติในเลือด

การปรับปรุงพันธุ์เบญจมาศโดยใช้สิ่งก่อกลายพันธุ์

คณะเทคโนโลยีการเกษตร

การปรับปรุงพันธุ์เบญจมาศโดยใช้สิ่งก่อกลายพันธุ์

ศึกษาผลของสารก่อกลายพันธุ์ ethyl methane sulfonate (EMS) และสารโคลชิซินในการชักนำให้เกิดการกลายพันธุ์ของเฐญจมาศในสภาพปลอดเชื้อ โดยทำการแช่เนื้อเยื้อเบญจมาศในสารละลายที่รดับความเข้มข้นต่างๆในระยะเวลาที่แตกต่างกัน พบว่า ชิ้นส่วนเริ่มต้นที่แช่สารละลาย EMS ส่งผลต่อลักษณะทางสัณฐานวิทยาที่เปลี่ยนแปลงไป ทั้งสีดอกและรูปทรงของดอก ส่วนสารละลายโคลชิซินส่งผลต่อการเปลี่ยนแปลงของจำนวนโครโมโซม และเพิ่มขนาดของต้นและดอก และตรวจสอบด้วยเครื่องหมายโมเลกุลสามารถแยกความแตกต่าง การใช้สิ่งก่อกลายพันธุ์ร่วมกับการเพาะเลี้ยงเนื้อเยื่อสามารถชักนำให้เกิดลักษณะใหม่ นำไปสู่การพัฒนาพันธุ์เพื่อเป็นไม้ดอกการค้าได้