KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

In Silico Drug Discovery of Emerging Immune Checkpoint TIGIT-Binding Compounds for Cancer Immunotherapy: Computational Screening, Docking Studies, and Molecular Dynamics Analysis

Abstract

Cancer remains a major global health challenge as the second-leading cause of human death worldwide. The traditional treatments for cancer beyond surgical resection include radiation and chemotherapy; however, these therapies can cause serious adverse side effects due to their high killing potency but low tumor selectivity. The FDA approved monoclonal antibodies (mAbs) that target TIGIT/PVR (T-cell immunoglobulin and ITIM domain/poliovirus receptor) which is an emerging immune checkpoint molecules has been developed; however, the clinical translation of immune checkpoint inhibitors based on antibodies is hampered due to immunogenicity, immunological-related side effects, and high costs, even though these mAbs show promising therapeutic efficacy in clinical trials. To overcome these bottlenecks, small-molecule inhibitors may offer advantages such as better oral bioavailability and tumor penetration compared to mAbs due to their smaller size. Here, we performed structure-based virtual screening of FDA-approved drug repertoires. The 100 screened candidates were further narrowed down to 10 compounds using molecular docking, with binding affinities ranging from -9.152 to -7.643 kcal/mol. These compounds were subsequently evaluated for their pharmacokinetic properties using ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) analysis, which demonstrated favorable drug-like characteristics. The lead compounds will be further analyzed for conformational changes and binding stability against TIGIT through molecular dynamics (MD) simulations to ensure that no significant conformational changes occur in the protein structure. Collectively, this study represents the potential of computational methods and drug repurposing as effective strategies for drug discovery, facilitating the accelerated development of novel cancer treatments.

Objective

Cancer remains one of the leading causes of mortality worldwide, driven by its complex and multifactorial origins. The numerous factors contributing to cancer onset complicate the identification of specific triggers, posing significant challenges for treatment. Despite advancements in therapeutic options, no cure guarantees complete remission, and treatment strategies vary depending on the individual and disease stage. Current modalities, including radiation therapy, chemotherapy, and surgery, are often limited by efficacy and adverse side effects. Cancer immunotherapy has emerged as a promising alternative, targeting immune checkpoints—key regulators of immune cell activity. Immune checkpoint molecules such as programmed cell death protein 1 (PD-1), lymphocyte-activation gene 3 (LAG-3), T-cell immunoglobulin and mucin-domain containing-3 (TIM-3), and T-cell immunoreceptor with Ig and ITIM domains (TIGIT) have become critical therapeutic targets. Monoclonal antibody-based drugs designed to block these pathways have demonstrated significant clinical success. However, the clinical translation of antibody-based immune checkpoint inhibitors remains limited due to immunogenicity, immune-related side effects, and high production costs. Additionally, their large molecular size restricts tumor tissue penetration, and their relatively long half-life can cause serious side effects by prolonging drug retention and complicating elimination. To overcome these limitations, advancements in computational drug discovery—including virtual screening, molecular docking, and molecular dynamics simulations—enable the efficient identification of potential small-molecule inhibitors that can bind to immune checkpoint targets and disrupt their interactions. These in silico techniques have become essential tools in modern drug development, offering rapid, cost-effective, and high-throughput screening methods for identifying promising drug candidates. In this study, we utilized in silico drug screening using FDA-approved drug libraries which were selected against a next-generation immune checkpoint TIGIT through structure-based virtual screening and molecular docking analysis. Additionally, the screened compounds demonstrated favorable drug-like properties, as assessed by ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) analysis. Collectively, this study represents the potential of computational approaches to accelerate drug screening process. Using these approaches, we identified the lead compounds that can target TIGIT molecule which can be potentially used for cancer treatment.

Other Innovations

CLASSIFICATION OF OTITIS MEDIA TYPE USING OTOSCOPIC IMAGES

คณะวิทยาศาสตร์

CLASSIFICATION OF OTITIS MEDIA TYPE USING OTOSCOPIC IMAGES

Otitis Media is an infection of the middle ear that can occur in individuals of all ages. Diagnosis typically involves analyzing images taken with an otoscope by specialized physicians, which relies heavily on medical experience to expedite the process. This research introduces computer vision technology to assist in the preliminary diagnosis, aiding expert decision-making. By utilizing deep learning techniques and convolutional neural networks, specifically the YOLOv8 and Inception v3 architectures, the study aims to classify the disease and its five characteristics used by physicians: color, transparency, fluid, retraction, and perforation. Additionally, image segmentation and classification methods were employed to analyze and predict the types of Otitis Media, which are categorized into four types: Otitis Media with Effusion, Acute Otitis Media with Effusion, Perforation, and Normal. Experimental results indicate that the classification model performs moderately well in directly classifying Otitis Media, with an accuracy of 65.7%, a recall of 65.7%, and a precision of 67.6%. Moreover, the model provides the best results for classifying the perforation characteristic, with an accuracy of 91.8%, a recall of 91.8%, and a precision of 92.1%. In contrast, the classification model that incorporates image segmentation techniques achieved the best overall performance, with an mAP50-95 of 79.63%, a recall of 100%, and a precision of 99.8%. However, this model has not yet been tested for classifying the different types of Otitis Media.

Read more
AfterDay Horizon

คณะเทคโนโลยีสารสนเทศ

AfterDay Horizon

The AfterDay Horizon project is a two-player survival game developed to raise awareness of the impact of climate change. It leverages Virtual Reality (VR) technology and a website as gaming platforms. In the game, players experience a world where civilization has collapsed due to global warming, forcing the remaining population to live in bunkers to avoid environmental dangers. AfterDay Horizon focuses on collaboration between the two players to complete various missions that help the bunker’s inhabitants survive as long as possible. These missions are designed to encourage teamwork and decision-making in challenging scenarios, while also raising awareness of the potential consequences of climate change if left unresolved. Preliminary testing of the game showed that players successfully completed the missions and worked well together. However, some missions were complex and time-consuming, indicating areas for improvement to enhance the overall enjoyment and gameplay experience.

Read more
Organic fertilizer products from horse manure

วิทยาลัยการจัดการนวัตกรรมและอุตสาหกรรม

Organic fertilizer products from horse manure

This research aims to study the waste management process of horse manure, the production process of organic fertilizer from horse waste, and opinions on the use of innovative organic fertilizer from horse manure. A mixed-method approach, combining qualitative and quantitative research, is employed. The organic fertilizer is produced from horse manure, which is a waste that incurs disposal costs. Through the fermentation process, it is transformed into an environmentally friendly fertilizer containing essential nutrients beneficial to plants. According to the laboratory analysis of the organic fertilizer conducted by the Soil Science Laboratory, Faculty of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, it was found that organic fertilizer from horse manure contains essential nutrients for plant growth, including macronutrients, secondary nutrients, and micronutrients. This reflects the potential of horse waste management, the production process of organic fertilizer from horse manure, the efficiency of the organic fertilizer, and strategies for adding value to expand its commercialization.

Read more