KMITL Innovation Expo 2025 Logo

อีโค่-สมาร์ตแดมเปอร์จากส่วนผสมยางธรรมชาติเพื่อลดเสียงและการสั่นสะเทือนบนทางรถไฟ

อีโค่-สมาร์ตแดมเปอร์จากส่วนผสมยางธรรมชาติเพื่อลดเสียงและการสั่นสะเทือนบนทางรถไฟ

รายละเอียด

ระบบขนส่งทางรางมีบทบาทสำคัญในการดำเนินชีวิตของประชาชนรวมทั้งการขับเคลื่อนเศรษฐกิจของประเทศในปัจจุบัน ส่งผลให้เกิดการก่อสร้างโครงการระบบขนส่งทางรางไปทั่วประเทศ ทั้งนี้การขยายตัวแบบก้าวกระโดดดังกล่าว ย่อมส่งผลให้มลภาวะทางเสียงและการสั่นสะเทือนจากทางรถไฟมีมากขึ้นเป็นเงาตามตัว ซึ่งมลภาวะดังกล่าวอาจส่งผลต่อคุณภาพชีวิตของประชาชนที่อาศัยอยู่ในบริเวณใกล้เคียงได้ ในต่างประเทศการแก้ปัญหาทำได้หลายวิธีแต่วิธีที่เป็นที่นิยมกันในปัจจุบันคือการลดเสียงที่แหล่งกำเนิดหรือการปรับการสั่นสะเทือนด้วยการใส่แท่งสลายพลังงาน (Track Damper) ที่รางรถไฟโดยถือเป็นข้อแนะนำในการแก้ปัญหาเรื่องเสียงและการสั่นสะเทือนในหลายประเทศในทวีปยุโรปและออสเตรเลียเนื่องจากมีราคาถูกและได้ผลลัพธ์ที่มีประสิทธิภาพ ทั้งนี้ที่ผ่านมาบริษัท AUT ประเทศไทย เป็นผู้ผลิตชิ้นส่วนสำคัญคือแท่งดังกล่าวให้กับเจ้าของเทคโนโลยีส่งออกไปต่างประเทศมากกว่า 300,000 ชิ้นและมีความต้องการสูงขึ้นเรื่อยๆ จากการขยายตัวของระบบรางทั่วโลก โดยวัสดุส่วนใหญ่จะนำเข้าจากต่างประเทศเป็นวัสดุสังเคราะห์ซึ่งมีแหล่งกำเนิดที่ไม่เป็นมิตรกับสิ่งแวดล้อม ดังนั้นโครงการวิจัยนี้จึงมีวัตถุประสงค์เพื่อพัฒนาต่อยอดจากผลิตภัณฑ์ดังกล่าวโดยเพิ่มความเป็นมิตรกับสิ่งแวดล้อมด้วยการแทนที่เนื้อวัสดุบางอย่างด้วยวัสดุที่ในประเทศสองชนิดคือยางพาราและเศษยางรถยนต์เก่า และเพิ่มฟังก์ชั่นการใช้งานที่มีความอัจฉริยะด้วยการติดตั้งเซ็นเซอร์ตรวจวัดและวิเคราะห์การเคลื่อนผ่านของการรถไฟด้วยระบบปัญญาประดิษฐ์และไอโอที ทำให้นอกจากเพิ่มมูลค่าจากความเป็นมิตรกับสิ่งแวดล้อมแล้วระบบเซ็นเซอร์ฝังตัวอัจฉริยะยังสามารถใช้เป็นระบบตรวจวัดเพื่อการแจ้งเตือนและเป็นข้อมูลเพื่อวางแผนบำรุงรักษาได้อีกด้วย ทั้งนี้ในการดำเนินงานวิจัยจะมีการทำงานร่วมกันกับผู้ประกอบการอย่างใกล้ชิด ตั้งแต่การออกแบบ การผลิตและการทดสอบ ยกระดับจาก TRL 8-9 ในฐานะผู้ผลิตบางชิ้นส่วนของผู้ประกอบการเป็นเจ้าของเทคโนโลยีในระดับ TRL 7-8 เพื่อการแข่งขันในตลาดระบบรางระดับสากลต่อไป

วัตถุประสงค์

ปัญหาด้านเสียงรบกวนนั้นถูกจัดเป็นหนึ่งในปัญหาด้านมลพิษที่ได้รับการร้องเรียนมากที่สุด มลพิษทางเสียงเกิดขึ้นได้จากหลายแหล่ง เช่น เสียงรบกวนอันเกิด จากกิจกรรม เสียงรบกวนจากการก่อสร้าง เสียงรบกวนจากการผลิตในโรงงานอุตสาหกรรม เสียงรบกวนจากการคมนาคมขนส่งทางน้ำ ทางอากาศ และทางถนน รวมถึงการขนส่งระบบรางด้วยเช่นกัน มีการทำการศึกษาและจัดทำมาตรฐานการตรวจวัดรวมถึงพิจารณาออกกฎหมายที่เกี่ยวข้องกับเสียงรบกวนในระบบรางเพื่อบังคับใช้ตามความเหมาะสมในแต่ละประเทศ ในประเทศไทยมีความเป็นได้สูงที่จะประสบปัญหาเสียงรบกวนในลักษณะเดียวกันกับประเทศอื่นๆ เหมือนกัน ในระบบยานพาหนะระบบรางจะมักเกิดเสียงรบกวน 2 ส่วน ได้แก่ เสียงรบกวนภายนอก (Exterior Noise) และเสียงรบกวนภายใน (Interior Noise) โดยเสียงรบกวนภายนอกนั้นหมายถึงเสียงรบกวนจากแหล่งกำเนิด แหล่งกำเนิดเสียงหลัก ๆ ของพาหนะระบบรางนั้นอาจเกิดได้จากปฏิสัมพันธ์ระหว่างล้อและรางในขณะวิ่งบนรางตรง (Rolling Noise), เกิดจากการจากการเสียดสีแบบลื่นไถลระหว่างล้อและรางเมื่อพาหนะทำการลากภาระ(Traction Noise) หรือเป็นเสียงรบกวนอันเกิดจากอากาศพลศาสตร์ (Aerodynamic Noise) อย่างไรก็ตามการควบคุมการเกิดเสียงรบกวนในรูปแบบต่าง ๆ ที่กล่าวไว้ข้างต้นนั้นย่อมต้องการเทคนิคการควบคุมเสียงรบกวนที่แตกต่างกันไป แท่งสลายพลังงาน (Rail Damper) ซึ่งถูกนำเสนอในโครงการวิจัยนี้โดยมีความเหมาะสมในการลดเสียงรบกวนในส่วนของ Rolling Noise และ Traction Noise เป็นสำคัญ สำหรับผู้ประกอบการในประเทศไทยที่เป็นผู้ผลิตและประกอบแท่งสลายพลังงาน (Rail Damper) อาทิ Silent TrackTM มียอดการผลิตสูงและมีแนวโน้มที่จะมียอดสั่งผลิตเพิ่มขึ้นเรื่อย ๆ อย่างไรก็ตามการรับจ้างผลิตให้เจ้าของเทคโนโลยีเพียงอย่างเดียวทำให้ไม่สามารถสร้างมูลค่าเพิ่มของตัวผลิตภัณฑ์ได้ อีกทั้งวัสดุที่ใช้ทำจากวัสดุสังเคราะห์ที่ต้องนำเข้ามา 100% ดังนั้นโครงการวิจัยนี้จึงมีวัตถุประสงค์เพื่อพัฒนาต่อยอดจากผลิตภัณฑ์ดังกล่าวโดยเพิ่มความเป็นมิตรกับสิ่งแวดล้อมด้วยการแทนที่เนื้อวัสดุบางอย่างด้วยวัสดุ ในประเทศสองชนิด คือ ยางพาราและเศษยางรถยนต์เก่า (Crumb Rubber) ทั้งนี้ในการดำเนินงานวิจัยได้ทำงานร่วมกันกับผู้ประกอบการอย่างใกล้ชิด ตั้งแต่การออกแบบ การผลิตและการทดสอบเพื่อยกระดับจาก TRL 8-9 ในฐานะผู้ผลิตบางชิ้นส่วนของผู้ประกอบการเป็นเจ้าของเทคโนโลยีในระดับ TRL 7-8 เพื่อการแข่งขันในตลาดระบบรางระดับสากลต่อไป

นวัตกรรมอื่น ๆ

การศึกษาอัตราส่วนที่เหมาะสมของขิง ปลีกล้วย และกระเจี๊ยบในการห่อหุ้มลิโพโซมเพื่อเพิ่มประสิทธิภาพของคุณสมบัติต้านอนุมูลอิสระและปริมาณสารฟีนอลิก

คณะอุตสาหกรรมอาหาร

การศึกษาอัตราส่วนที่เหมาะสมของขิง ปลีกล้วย และกระเจี๊ยบในการห่อหุ้มลิโพโซมเพื่อเพิ่มประสิทธิภาพของคุณสมบัติต้านอนุมูลอิสระและปริมาณสารฟีนอลิก

ปัจจุบันการบริโภคอาหารที่มีฤทธิ์ต้านอนุมูลอิสระได้รับความสนใจมากขึ้น เนื่องจากสามารถช่วยลดความเสี่ยงในการเกิดโรคเรื้อรัง เช่น โรคมะเร็ง โรคหัวใจ และภาวะเสื่อมของเซลล์ ขิง (Zingiber officinale) ปลีกล้วย (Musa paradisiaca L.) และกระเจี๊ยบ (Hibiscus sabdariffa L.) เป็นพืชสมุนไพรที่มีสารประกอบฟีนอลิกสูง ซึ่งเป็นสารสำคัญที่มีบทบาทในการต้านอนุมูลอิสระ อย่างไรก็ตาม สารสำคัญจากพืชเหล่านี้มักมีข้อจำกัดด้านความคงตัวเมื่อสัมผัสกับแสง อุณหภูมิ และออกซิเจน ส่งผลให้ประสิทธิภาพลดลง งานวิจัยนี้มุ่งเน้นการศึกษาอัตราส่วนที่เหมาะสมของขิง ปลีกล้วย และกระเจี๊ยบ ในการกักเก็บด้วยลิโพโซม ซึ่งเป็นเทคนิคการห่อหุ้มสารสำคัญที่ช่วยเพิ่มความคงตัวของสารออกฤทธิ์และเพิ่มประสิทธิภาพในการนำส่งสารเข้าสู่ร่างกาย การศึกษานี้ดำเนินการโดยวิเคราะห์ฤทธิ์ต้านอนุมูลอิสระของสารสกัดจากขิง ปลีกล้วย และกระเจี๊ยบ ด้วยวิธี DPPH, ABTS และ FRAP รวมถึงการวัดปริมาณสารฟีนอลิกรวม (Total Phenolic Content, TPC) จากนั้นเลือกอัตราส่วนที่มีฤทธิ์ต้านอนุมูลอิสระสูงสุดมาทำการห่อหุ้มด้วยลิโพโซม โดยใช้ฟอสโฟลิปิดเป็นองค์ประกอบหลักของโครงสร้างลิโพโซม จากนั้นวิเคราะห์ประสิทธิภาพของลิโพโซมในการกักเก็บสารสำคัญผ่านการคำนวณค่า Encapsulation Efficiency (EE%) เพื่อตรวจสอบประสิทธิภาพการห่อหุ้ม ผลการวิจัยคาดว่าจะช่วยระบุอัตราส่วนที่เหมาะสมของขิง ปลีกล้วย และกระเจี๊ยบที่สามารถเพิ่มฤทธิ์ต้านอนุมูลอิสระสูงสุด และทำให้สารสำคัญมีความคงตัวมากขึ้นเมื่อผ่านกระบวนการห่อหุ้มด้วยลิโพโซม ซึ่งเป็นแนวทางสำคัญในการพัฒนาผลิตภัณฑ์เสริมสุขภาพจากสมุนไพรที่สามารถรักษาคุณสมบัติทางชีวภาพของสารสำคัญได้ในระยะยาว

การผลิตเชื้อต้นแบบ Lactic acid bacteria ในการผลิต Probiotic จากประเทศไทยที่สามารถใช้ในระบบผลิตปศุสัตว์

คณะเทคโนโลยีการเกษตร

การผลิตเชื้อต้นแบบ Lactic acid bacteria ในการผลิต Probiotic จากประเทศไทยที่สามารถใช้ในระบบผลิตปศุสัตว์

สารปฏิชีวนะ (Antibiotic) ถูกใช้กันอย่างแพร่หลายในระบบการผลิตปศุสัตว์ โดยมีวัตถุประสงค์เพื่อกระตุ้นภูมิคุมกัน เพิ่มประสิทธิภาพการย่อยและดูดซึมโภชนะ กระตุ้นการเจริญเติบโต ปรับสมดุลของระบบทางเดินอาหาร และลดการเกิดการติดเชื้อก่อโรค โดยเฉพาะกลุ่มที่ก่อให้เกิดโรคท้องเสีย เป็นต้น นอกจากนั้น สารปฏิชีวนะยังมีส่วนช่วยในเรื่องของผลตอบแทนทางเศรฐกิจอีกด้วย แต่อย่างไรก็ตาม การใช้สารปฏิชีวนะที่ไม่ถูกวิธีก่อให้เกิดปัญหาเรื่องการตกค้างของสารปฏิชีวนะในผลิตภัณฑ์ การดื้อยาในสัตว์และผู้บริโภค ด้วยเหตุนี้หลายประเทศห้ามไม่ให้ใช้ยาปฏิชีวนะเป็นสารเร่งการเจริญเติบโต เช่น สหภาพยุโรป ประเทศญี่ปุ่น และยังมีอีกหลายๆ ประเทศที่มีการวางแผนที่จะห้ามไม่ให้มีการใช้ยาปฏิชีวนะในอาหารสัตว์ เช่น ประเทศจีน และสหรัฐอเมริกา เป็นต้น ในขณะที่ประเทศไทยได้มีประกาศควบคุมการใช้ยาปฏิชีวนะในอาหารสัตว์โดยมีผลบังคับใช้ทั้งระดับโรงงานผลิตอาหารสัตว์ และฟาร์มที่ผสมอาหารสัตว์ใช้เองตั้งแต่วันที่ 26 กันยายน พ.ศ. 2563 ดังนั้น การทดแทนการใช้สารปฏิชีวนะด้วย Probiotic ถือว่าเป็นการแก้ปัญหาได้เป็นอย่างดี ในการศึกษาครั้งนี้ ได้ทำการศึกษาเชื้อ Lactic acid bacteria ที่มีอยู่ในระบบทางเดินอาหารของไก่เนื้อ สุกร และโคเนื้อ ที่มีคุณสมบัติเป็น Probiotic ที่มีความเหมาะสมต่อการใช้ในสภาพแวดล้อมของประเทศไทย เพื่อใช้เป็นเชื่อต้นแบบทดแทนการนำเข้าผลิตภัณฑ์ Probiotic กลุ่ม Lactic acid bacteria จากต่างประเทศที่มักจะประสบปัญหาเรื่องอัตราการรอดชีวิตเมื่อนำไปใช้จริง

การออกแบบห้องแปรรูปเครื่องในแดงสุกร

คณะวิศวกรรมศาสตร์

การออกแบบห้องแปรรูปเครื่องในแดงสุกร

โครงงานนี้มีวัตถุประสงค์เพื่อนำเสนอแนวทางการออกแบบห้องแปรรูปเครื่องในแดงสำหรับโรงงานแปรรูปสุกร ที่มีการแปรรูปสุกร 500 ตัวต่อวันหรือ 80 ตัวต่อชั่วโมง น้ำหนักสุกรเฉลี่ยประมาณ 105 กิโลกรัม/ตัว มีเครื่องในแดงอยู่ร้อยละ 3.47 เพื่อทำการแยกชิ้นส่วน ตับ ขั้วตับ หัวใจ ปอด ม้ามและไต ตามต้องการ และทำการแช่ในน้ำเย็นเพื่อลดอุณหภูมิให้ต่ำกว่า 7 องศาเซลเซียส แล้วจึงนำบรรจุและปิดผนึก การคัดแยกใช้จำนวนชิ้นและน้ำหนักเป็นเกณฑ์ในการคัดแยกตามแต่ชนิด เวลาในการแปรรูป การแช่น้ำเย็นและการบรรจุมีความแตกต่างกันตามชนิดและขนาดสินค้า ข้อมูลในการออกแบบได้จากการเก็บข้อมูลในสายการผลิตปัจจุบันและข้อมูลอ้างอิงตามมาตรฐานต่าง ๆ ออกแบบห้องแปรรูปตามหลักการวางผังโรงงานอย่างเป็นระบบ (Systematic Layout Planning: SLP) วิเคราะห์ความสัมพันธ์ของกิจกรรมภายในห้อง จัดทำแผนผังสำหรับการกำหนดพื้นที่ใช้งาน คำนวณขนาดอุปกรณ์และจำนวนผู้ปฏิบัติงานที่จำเป็นต่อการใช้งาน พื้นที่ของห้องเครื่องในแดงถูกออกแบบมีขนาด 56 ตารางเมตร หลังจากออกแบบแผนผังได้มีการจำลองห้องในรูปแบบ 3 มิติด้วยโปรแกรม SketchUp 2024 พร้อมทั้งจำลองและวิเคราะห์การทำงานในห้องด้วยโปรแกรม Flexsim 2024