KMITL Innovation Expo 2025 Logo

การพัฒนาอัลจิเนตไฮโดรเจลที่มีคาราจีแนนและเจลแลนกัมเป็นวัสดุคอมโพซิตเพื่อใช้เป็นตัวพาสำหรับนำส่งทางปาก

รายละเอียด

งานวิจัยนี้มีวัตถุประสงค์เพื่อพัฒนาอัลจิเนตไฮโดรเจลที่เสริมด้วยคาร์ราจีแนนและเจลแลนกัม เพื่อใช้เป็นวัสดุคอมโพซิตสำหรับนำส่งสารสำคัญทางปาก อัลจิเนตเป็นพอลิเมอร์จากสาหร่ายสีน้ำตาลที่สามารถเกิดเจลเมื่อสัมผัสกับไอออนบวก เช่น แคลเซียมไอออน ซึ่งช่วยเพิ่มความแข็งแรงให้กับโครงสร้างไฮโดรเจล ขณะที่คาร์ราจีแนนและเจลแลนกัมเป็นพอลิแซ็กคาไรด์ที่ช่วยเพิ่มเสถียรภาพและความสามารถในการกักเก็บสารสำคัญ การศึกษานี้วิเคราะห์ลักษณะทางกายภาพ ความแข็งแรงของไฮโดรเจลบีดส์ ความสามารถในการกักเก็บสารสำคัญ รวมถึงพฤติกรรมการบวมภายใต้สภาวะจำลองของทางเดินอาหาร ผลการศึกษาคาดว่าการเสริมคาร์ราจีแนนและเจลแลนกัมจะช่วยเพิ่มความแข็งแรงและเสถียรภาพของไฮโดรเจลบีดส์ พร้อมทั้งควบคุมการปลดปล่อยสารสำคัญในระบบทางเดินอาหารได้อย่างมีประสิทธิภาพ ไฮโดรเจลบีดส์ที่พัฒนาขึ้นนี้มีศักยภาพในการนำไปใช้ในอุตสาหกรรมอาหารและเภสัชกรรมเพื่อการนำส่งสารสำคัญทางปาก

วัตถุประสงค์

ในงานวิจัยนี้มีจุดมุ่งหมายเพื่อพัฒนาไฮโดรเจลบีดส์จากอัลจิเนตที่เสริมด้วยคาร์ราจีแนนและเจลแลนกัม โดยมีคุณสมบัติที่ช่วยเสริมความแข็งแรงและความยืดหยุ่นให้กับโครงสร้างของไฮโดรเจลบีดส์ เพื่อเพิ่มความทนทานและเสถียรภาพมากขึ้น ซึ่งสามารถนำมาใช้ในการห่อหุ้มและปกป้องสารสำคัญ โดยมุ่งเน้นการควบคุมการปลดปล่อยสารสำคัญไปยังจุดเป้าหมาย การศึกษานี้จะครอบคลุมถึงลักษณะทางกายภาพ ความแข็งแรงของไฮโดรเจลบีดส์ และความสามารถในการกักเก็บสารสำคัญ ลักษณะทางกายภาพและการบวม (Swelling) ภายใต้สภาวะจำลองทางเดินอาหาร โดยใช้สารจำลองน้ำย่อยทั้งในกระเพาะอาหารและลำไส้ การพัฒนาไฮโดรเจลบีดส์จากอัลจิเนตที่เสริมด้วยคาร์ราจีแนนและเจลแลนกัมมีศักยภาพในการนำไปใช้งานในอุตสาหกรรมเภสัชกรรมและอาหารที่ต้องการห่อหุ้มสารสำคัญที่มีประสิทธิภาพสูงในอนาคต

นวัตกรรมอื่น ๆ

ลักษณะและคุณค่าทางโภชนาการของธัญพืชอัดแท่งเสริมผงไบโอแคลเซียมจากกระดูกปลากะพงขาว

คณะอุตสาหกรรมอาหาร

ลักษณะและคุณค่าทางโภชนาการของธัญพืชอัดแท่งเสริมผงไบโอแคลเซียมจากกระดูกปลากะพงขาว

ผงไบโอแคลเซียมถูกสกัดจากกระดูกปลากะพงเอเชียด้วยวิธีเสริมด้วยด่างที่ให้ความร้อนพร้อมการกำจัดไขมันและการฟอกสี ธัญพืชอัดแท่ง (CBs) ได้รับการเสริมด้วยไบโอแคลเซียมที่ผลิตขึ้นใน 3 ระดับ: (1) แคลเซียมที่เพิ่มขึ้น (IS-Ca; แคลเซียม ≥10% RDI ของไทย), (2) แหล่งแคลเซียมที่ดี (GS-Ca; แคลเซียม ≥15% RDI ของไทย) และ (3) แคลเซียมสูง (H-Ca; แคลเซียม ≥30% RDI ของไทย) ซึ่งสอดคล้องกับประกาศกระทรวงสาธารณสุขของประเทศไทย: ฉบับที่ 445; การเรียกร้องคุณค่าทางโภชนาการที่ออกในปี พ.ศ. 2566 วัดปริมาณความชื้น แอคติวิตี้ของน้ำ สี ปริมาณแคลเซียม และการวิเคราะห์ FTIR ของผงไบโอแคลเซียม ขนาด สี แอคติวิตี้ของน้ำ ค่า pH และเนื้อสัมผัสของ CBs ที่เสริมได้รับการกำหนด ไบโอแคลเซียมที่ผลิตได้สามารถจำแนกได้ว่าเป็นอาหารแห้งที่มีสีเหลืองอ่อนอมขาว ปริมาณแคลเซียมในผงแคลเซียมชีวภาพอยู่ที่ 23.4% (w/w) ขนาด น้ำหนัก และสี ยกเว้นค่า b* และ ΔE* ของ CB ที่เสริมสารไม่แตกต่างกัน (P > 0.05) จาก CB ในกลุ่มควบคุม การเสริมสารแคลเซียมชีวภาพทำให้ CB มีเนื้อสัมผัสที่แข็งขึ้น การเพิ่มปริมาณแคลเซียมชีวภาพที่เสริมสารทำให้คาร์โบไฮเดรตและไขมันลดลง แต่โปรตีน เถ้า และแคลเซียมใน CB ที่เสริมสารเพิ่มขึ้น อายุการเก็บรักษาของ CB จะสั้นลงโดยการเสริมผงแคลเซียมชีวภาพเนื่องจากความชื้น กิจกรรมของน้ำ และค่า pH ที่เพิ่มขึ้น ผลผลิตของ CB ชีวภาพอยู่ที่ 40.30% ต้นทุนการผลิตแคลเซียมชีวภาพอยู่ที่ประมาณ 7,416 Bth/kg ในขณะที่ต้นทุนของ CB ที่เสริมสารเพิ่มขึ้นเกือบ 2-3 เท่าเมื่อเทียบกับกลุ่มควบคุม ปริมาณแคลเซียมในธัญพืชอัดแท่งที่มีแคลเซียมสูง (IS-Ca) (921.12 มก./100 ก.) แคลเซียมสูง (GS-Ca) (1,287.10 มก./100 ก.) และแคลเซียมสูง (H-Ca) (2,639.70 มก./100 ก.) สามารถอ้างได้ว่าเป็นแหล่งแคลเซียมที่ดี และแคลเซียมสูงตามลำดับ สรุปได้ว่าการผลิตธัญพืชอัดแท่งที่เสริมด้วยผงแคลเซียมจากกระดูกปลากะพงขาวเป็นอาหารเสริมนั้นเป็นไปได้ อย่างไรก็ตาม จำเป็นต้องตรวจสอบสารเคมีอันตรายที่เหลืออยู่ในผงแคลเซียมก่อนนำไปใช้ในผลิตภัณฑ์อาหาร และควรวิเคราะห์ความสามารถในการดูดซึมแคลเซียม การยอมรับทางประสาทสัมผัส และอายุการเก็บรักษาของผลิตภัณฑ์ที่พัฒนาขึ้นในการศึกษาเพิ่มเติม

การทำน้ำให้บริสุทธิ์โดยใช้พลังงานความร้อนจากตัวเก็บพลังงานแสงอาทิตย์แบบท่อสุญญากาศ

คณะวิศวกรรมศาสตร์

การทำน้ำให้บริสุทธิ์โดยใช้พลังงานความร้อนจากตัวเก็บพลังงานแสงอาทิตย์แบบท่อสุญญากาศ

ปัญหาการขาดแคลนน้ำจืดเป็นวิกฤตระดับโลก เนื่องจากปริมาณน้ำจืดที่สามารถใช้ในการอุปโภคได้มีจำกัด ขณะที่ความต้องการใช้น้ำเพิ่มขึ้นอย่างต่อเนื่อง การแยกเกลือออกจากน้ำทะเลเป็นแนวทางสำคัญในการแก้ไขปัญหานี้ อย่างไรก็ตาม กระบวนการดังกล่าวต้องใช้พลังงานสูงและพึ่งพาเชื้อเพลิงฟอสซิล ส่งผลให้ต้นทุนสูงและกระทบต่อสิ่งแวดล้อม งานวิจัยนี้มีจุดประสงค์หลักคือเพื่อศึกษาการใช้พลังงานความร้อนจากตัวเก็บพลังงานแสงอาทิตย์แบบท่อสุญญากาศในการผลิตน้ำจืด โดยใช้กระบวนการระเหยและควบแน่นเพื่อนำน้ำบริสุทธิ์ออกจากสารละลายปนเปื้อน การศึกษานี้มุ่งเน้นการวิเคราะห์ประสิทธิภาพของระบบโดยเปรียบเทียบปริมาณน้ำจืดที่ผลิตได้กับพลังงานที่ใช้ ผลลัพธ์ของงานวิจัยนี้อาจนำไปสู่การพัฒนาเทคโนโลยีการผลิตน้ำจืดที่มีความยั่งยืนและเหมาะสมสำหรับพื้นที่ที่มีทรัพยากรน้ำจืดจำกัด

การห่อหุ้มแอนโธไซยานินในอิมัลชันแบบน้ำในน้ำมันในน้ำเพื่อทำแห้งแบบพ่นฝอย

คณะอุตสาหกรรมอาหาร

การห่อหุ้มแอนโธไซยานินในอิมัลชันแบบน้ำในน้ำมันในน้ำเพื่อทำแห้งแบบพ่นฝอย

งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาการห่อหุ้มแอนโธไซยานินในอิมัลชันชนิดน้ำในน้ำมันในน้ำ (W/O/W) และกระบวนการทำแห้งแบบพ่นฝอย เพื่อเพิ่มความเสถียรของแอนโธไซยานินจากปัจจัยภายนอก เช่น แสง อุณหภูมิ และการเปลี่ยนแปลงค่า pH การเตรียมอิมัลชัน W/O/W ดำเนินการโดยใช้สารลดแรงตึงผิวที่เหมาะสม และทำแห้งด้วยเครื่องพ่นฝอยที่อุณหภูมิขาเข้า 120–140°C และอุณหภูมิขาออกไม่ต่ำกว่า 80°C ผลการศึกษาพบว่าสัดส่วนองค์ประกอบของน้ำ น้ำมัน และสารลดแรงตึงผิวมีผลต่อคุณสมบัติทางกายภาพและเคมีของอิมัลชัน รวมถึงประสิทธิภาพในการกักเก็บแอนโธไซยานิน อิมัลชัน W/O/W ที่ผ่านกระบวนการทำแห้งแบบพ่นฝอยสามารถกักเก็บแอนโธไซยานินได้อย่างมีประสิทธิภาพ และช่วยเพิ่มความเสถียรในระยะยาว ซึ่งสามารถนำไปประยุกต์ใช้ในอุตสาหกรรมอาหารและผลิตภัณฑ์สุขภาพได้