KMITL Innovation Expo 2025 Logo

ถังแรงดันสูงแบบคอมโพสิตสำหรับก๊าซธรรมชาติอัด (CNG) และไฮโดรเจน (H₂)

ถังแรงดันสูงแบบคอมโพสิตสำหรับก๊าซธรรมชาติอัด (CNG) และไฮโดรเจน (H₂)

รายละเอียด

ถังบรรจุก๊าซความดันสูงที่ผลิตจากวัสดุประกอบ ได้แก่ คาร์บอนไฟเบอร์ เรซิน และพลาสติก ถูกออกแบบสำหรับบรรจุก๊าซธรรมชาติอัด (CNG) หรือไฮโดรเจน ซึ่งถูกเรียกว่า​ถังความดันสูง​ แบบที่​4 โดยในงานวิจัยนี้ได้ออกแบบให้รองรับการใช้งานที่ความดัน 250 บาร์ สำหรับการขนส่งก๊าซธรรมชาติอัด

วัตถุประสงค์

การบรรจุก๊าซที่ความดันสูงต้องใช้บรรจุภัณฑ์​ที่มีความแข็งแรง​ การใช้ถังที่ผลิตจากโลหะถูกนำมาใช้ในช่วงแรกๆ​ แต่ปัญหาที่ตามมาคือน้ำหนักมากทำให้สิ้นเปลืองเชื้อเพลิงในกรณีที่นำไปติดตั้งบนยานพาหนะ​ จึงเกิดการพัฒนาถังความดันที่พัฒนาจากวัสดุประกอบขึ้นซึ่งจะช่วยลดน้ำหนักของบรรจุภัณฑ์​และการกัดกร่อนเกิดขึ้นน้อย

นวัตกรรมอื่น ๆ

ระบบประเมินโมเดลภาษาขนาดใหญ่แบบออฟไลน์เพื่อออกแบบระบบผู้เชี่ยวชาญในภาษาไทย

วิทยาลัยนวัตกรรมการผลิตขั้นสูง

ระบบประเมินโมเดลภาษาขนาดใหญ่แบบออฟไลน์เพื่อออกแบบระบบผู้เชี่ยวชาญในภาษาไทย

ระบบประเมินโมเดลภาษาขนาดใหญ่แบบออฟไลน์ในภาษาไทยถูกออกแบบมาเพื่อช่วยให้ผู้เชี่ยวชาญสามารถทดสอบและประเมินประสิทธิภาพของโมเดลภาษาขนาดใหญ่ (Large Language Models: LLMs) ได้อย่างสะดวก รวดเร็ว และไม่ต้องพึ่งพาการเชื่อมต่อภายนอก ช่วยเพิ่มความคล่องตัวในการเลือกใช้ LLMs ที่เหมาะสมกับความต้องการขององค์กรหรือระบบผู้เชี่ยวชาญ (Expert System: ES) ระบบสามารถทำงานบนคอมพิวเตอร์ส่วนบุคคลโดยไม่ต้องกังวลเรื่องการเก็บข้อมูลภายนอก ส่งผลให้มีความปลอดภัยของข้อมูลสูง นอกจากนี้ ยังรองรับการทดสอบและพัฒนาโมเดลด้วยเทคนิคการดึงข้อมูลเสริม (Retrieval-Augmented Generation: RAG) เพื่อให้สามารถเข้าถึงข้อมูลเฉพาะทางและประมวลผลได้อย่างแม่นยำ มีประสิทธิภาพด้านพลังงาน และตอบสนองความต้องการขององค์กรและระบบผู้เชี่ยวชาญได้อย่างเหมาะสม

หุ่นยนต์นำทางและโต้ตอบอัจฉริยะ

คณะวิศวกรรมศาสตร์

หุ่นยนต์นำทางและโต้ตอบอัจฉริยะ

การบูรณาการระบบหุ่นยนต์อัจฉริยะเข้าสู่สภาพแวดล้อมที่มุ่งเน้นมนุษย์ เช่น ห้องปฏิบัติการ โรงพยาบาล และสถาบันการศึกษา มีความสำคัญมากขึ้นเนื่องจากความต้องการที่เพิ่มขึ้นสำหรับผู้ช่วยที่เข้าถึงได้และตระหนักถึงบริบท อย่างไรก็ตาม โซลูชันในปัจจุบันมักขาดความสามารถในการปรับขนาด เช่น การพึ่งพาบุคลากรเฉพาะทางเพื่อตอบคำถามเดิมซ้ำๆ ในฐานะผู้ดูแลระบบของแผนกเฉพาะ และการขาดความสามารถในการปรับตัวให้เข้ากับสภาพแวดล้อมแบบไดนามิกที่ต้องการการตอบสนองตามสถานการณ์แบบเรียลไทม์ งานวิจัยนี้นำเสนอกรอบแนวคิดใหม่สำหรับผู้ช่วยหุ่นยนต์เชิงโต้ตอบ (Beckerle et al., 2017) ที่ออกแบบมาเพื่อช่วยในระหว่างการเยี่ยมชมห้องปฏิบัติการและบรรเทาความท้าทายที่เกิดจากข้อจำกัดด้านทรัพยากรบุคคลในการให้ข้อมูลที่ครอบคลุมแก่ผู้เยี่ยมชม ระบบที่นำเสนอทำงานผ่านหลายโหมด รวมถึงโหมดสแตนด์บายและโหมดจดจำ เพื่อให้แน่ใจว่ามีการโต้ตอบที่ราบรื่นและสามารถปรับตัวได้ในบริบทต่างๆ ในโหมดสแตนด์บาย หุ่นยนต์จะแสดงสัญญาณความพร้อมผ่านแอนิเมชันใบหน้ายิ้มขณะลาดตระเวนตามเส้นทางที่กำหนดไว้ล่วงหน้าหรือประหยัดพลังงานเมื่อต้องหยุดนิ่ง การตรวจจับสิ่งกีดขวางขั้นสูงช่วยให้มั่นใจในความปลอดภัยขณะเคลื่อนที่ในสภาพแวดล้อมแบบไดนามิก ส่วนโหมดจดจำจะเปิดใช้งานผ่านท่าทางหรือคำปลุก โดยใช้เทคโนโลยีวิชันคอมพิวเตอร์ขั้นสูงและระบบรู้จำเสียงพูดแบบเรียลไทม์เพื่อตรวจจับผู้ใช้ การจดจำใบหน้าช่วยจำแนกบุคคลว่าเป็นที่รู้จักหรือไม่รู้จัก พร้อมทั้งมอบคำทักทายเฉพาะบุคคลหรือคำแนะนำตามบริบทเพื่อเพิ่มการมีส่วนร่วมของผู้ใช้ หุ่นยนต์ต้นแบบและการออกแบบ 3 มิติแสดงไว้ในรูปที่ 1 ในโหมดโต้ตอบ ระบบได้บูรณาการเทคโนโลยีขั้นสูงหลายประการ เช่น การรู้จำเสียงพูดขั้นสูง (ASR Whisper) การประมวลผลภาษาธรรมชาติ (NLP) และโมเดลภาษาขนาดใหญ่ Ollama 3.2 (LLM Predictor, 2025) เพื่อมอบประสบการณ์ที่ใช้งานง่าย รับรู้บริบท และสามารถปรับตัวได้ โดยได้รับแรงบันดาลใจจากความต้องการมีส่วนร่วมกับนักศึกษาและส่งเสริมความสนใจในภาควิชา RAI ซึ่งมีผู้เยี่ยมชมมากกว่า 1,000 คนต่อปี ระบบนี้ช่วยแก้ไขปัญหาการเข้าถึงข้อมูลในกรณีที่ไม่มีเจ้าหน้าที่มนุษย์ ด้วยการตรวจจับคำปลุก การจดจำใบหน้าและท่าทาง และการตรวจจับสิ่งกีดขวางด้วย LiDAR หุ่นยนต์จึงสามารถสื่อสารภาษาอังกฤษได้อย่างราบรื่น พร้อมทั้งนำทางอย่างปลอดภัยและมีประสิทธิภาพ ระบบปฏิสัมพันธ์แบบ Retrieval-Augmented Generation (RAG) สื่อสารกับหุ่นยนต์เคลื่อนที่ที่สร้างบน ROS1 Noetic โดยใช้โปรโตคอล MQTT ผ่านเครือข่าย Ethernet ระบบนี้เผยแพร่เป้าหมายการนำทางไปยังโมดูล move_base ใน ROS ซึ่งจัดการการนำทางและหลีกเลี่ยงสิ่งกีดขวางโดยอัตโนมัติ แผนผังอธิบายระบบแสดงไว้ในรูปที่ 2 กรอบแนวคิดนี้ประกอบด้วยสถาปัตยกรรมแบ็กเอนด์ที่แข็งแกร่ง โดยใช้ MongoDB สำหรับการจัดเก็บและดึงข้อมูล รวมถึงกลไก RAG (Thüs et al., 2024) ในการประมวลผลข้อมูลหลักสูตรในรูปแบบ PDF เพื่อให้แน่ใจว่าหุ่นยนต์สามารถให้คำตอบที่ถูกต้องและเหมาะสมกับบริบทแก่ผู้ใช้ นอกจากนี้ การใช้แอนิเมชันใบหน้ายิ้มและระบบแปลงข้อความเป็นเสียง (TTS BotNoi) ยังช่วยเพิ่มอัตราการมีส่วนร่วมของผู้ใช้ ผลลัพธ์จากการศึกษาสังเกตการณ์และแบบสำรวจพบว่าระบบมีการปรับปรุงอย่างมีนัยสำคัญในด้านความพึงพอใจของผู้ใช้และการเข้าถึงข้อมูล เอกสารฉบับนี้ยังกล่าวถึงความสามารถของหุ่นยนต์ในการทำงานในสภาพแวดล้อมแบบไดนามิกและพื้นที่ที่เน้นมนุษย์ เช่น การจัดการกับการรบกวนระหว่างปฏิบัติภารกิจ การออกแบบแบบแยกส่วนช่วยให้สามารถผสานรวมฟีเจอร์เพิ่มเติม เช่น การจดจำท่าทางและการอัปเกรดฮาร์ดแวร์ได้ง่าย ซึ่งช่วยให้ระบบสามารถขยายขีดความสามารถในระยะยาวได้ อย่างไรก็ตาม มีข้อจำกัดบางประการ เช่น ต้นทุนการติดตั้งเริ่มต้นที่สูงและการพึ่งพาการกำหนดค่าฮาร์ดแวร์เฉพาะ ในอนาคต งานวิจัยจะมุ่งเน้นไปที่การเพิ่มความสามารถในการรองรับภาษาต่างๆ การขยายกรณีการใช้งาน และการสำรวจปฏิสัมพันธ์แบบร่วมมือกันระหว่างหุ่นยนต์หลายตัว โดยสรุป ผู้ช่วยหุ่นยนต์เชิงโต้ตอบที่นำเสนอในงานวิจัยนี้เป็นก้าวสำคัญในการเชื่อมโยงความต้องการของมนุษย์เข้ากับความก้าวหน้าทางเทคโนโลยี ด้วยการผสานรวมเทคโนโลยีปัญญาประดิษฐ์ล้ำสมัยเข้ากับโซลูชันฮาร์ดแวร์ที่ใช้งานได้จริง งานวิจัยนี้จึงนำเสนอระบบที่สามารถขยายขีดความสามารถ มีประสิทธิภาพ และเป็นมิตรกับผู้ใช้ ซึ่งช่วยเพิ่มการเข้าถึงข้อมูลและการมีส่วนร่วมของผู้ใช้ในสภาพแวดล้อมที่มุ่งเน้นมนุษย์

ผลของแคนนาบิไดออลต่อความไวในการกระตุ้นเซลล์ประสาทไทรเจมินัลของหนู

คณะแพทยศาสตร์

ผลของแคนนาบิไดออลต่อความไวในการกระตุ้นเซลล์ประสาทไทรเจมินัลของหนู

โครงการวิจัยนี้ศึกษาผลของสาร CBD ต่อความไวของเซลล์ประสาทในการรับรู้ความเจ็บปวดจากหนู โดยใช้วิธี Whole Cell Patch Clamp เพื่อวัดพารามิเตอร์ทางไฟฟ้าสรีรวิทยาของเซลล์ที่ได้รับการเพาะเลี้ยงด้วย CBD ขนาด 0.5 uM เป็นเวลา 24 ชั่วโมงเทียบกับกลุ่มควบคุม