งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาการหมักร่วม (Co-fermentation) ระหว่างแบคทีเรียกรดแลคติก (Lactic Acid Bacteria, LAB) และยีสต์ Saccharomyces cerevisiae ในการผลิตเบียร์เปรี้ยว (Sour Beer) โดยมุ่งเน้นผลกระทบของการหมักร่วมต่อคุณภาพของผลิตภัณฑ์ ได้แก่ ค่า pH ปริมาณกรดอินทรีย์ ปริมาณน้ำตาล และคุณลักษณะทางประสาทสัมผัส ในการทดลอง ใช้แบคทีเรียกรดแลคติกสายพันธุ์ที่คัดเลือก และยีสต์ S. cerevisiae ในสภาวะการหมักที่ควบคุม อัตราส่วนของจุลินทรีย์ถูกปรับให้เหมาะสมเพื่อส่งเสริมการเจริญเติบโตและการสร้างสารสำคัญ ผลการทดลองพบว่า การหมักร่วมสามารถลดค่า pH ได้อย่างมีนัยสำคัญเมื่อเทียบกับการหมักด้วยยีสต์เพียงอย่างเดียว นอกจากนี้ ยังมีการเพิ่มขึ้นของกรดแลคติกเนื่องจากการใช้น้ำตาลของเชื้อLAB ซึ่งส่งผลต่อรสชาติที่เป็นเอกลักษณ์ของเบียร์เปรี้ยว
เบียร์เปรี้ยว (Sour Beer) เป็นเบียร์ประเภทหนึ่งที่มีรสเปรี้ยวเฉพาะตัว ซึ่งเกิดจากกระบวนการหมักที่ต่างจากเบียร์ทั่วไป ความเปรี้ยวของ เบียร์เปรี้ยวเกิดจากการใช้แบคทีเรียกรดแลกติก (Lactic acid bacteria) และยีสต์เช่น Lactobacillus และ Pediococcus,ในการหมักเพิ่มทางเลือกให้กับผู้บริโภค Sour Beer เป็นตัวเลือกที่น่าสนใจสำหรับคนที่ต้องการประสบการณ์รสชาติใหม่ๆ แตกต่างจากเบียร์รสขมทั่วไป โดยมีทั้งรสเปรี้ยวที่เบาและรสเข้มข้น การหมักและกระบวนการผลิตเฉพาะทาง การทำ Sour Beer ต้องใช้ความรู้และเทคนิคพิเศษทำให้ต้องมีการควบคุมกระบวนการหมักอย่างใกล้ชิดซึ่งส่งเสริมการพัฒนาทักษะและนวัตกรรมในอุตสาหกรรมการผลิตเบียร์ ผู้ผลิตต้องเข้าใจลักษณะของจุลินทรีย์ที่ใช้และรู้จักการควบคุมรสชาติ ทำให้ Sour Beerมีความสำคัญในการพัฒนาอุตสาหกรรมเบียร์ไปสู่ความสร้างสรรค์ใหม่ๆ

คณะวิศวกรรมศาสตร์
ถังบรรจุก๊าซความดันสูงที่ผลิตจากวัสดุประกอบ ได้แก่ คาร์บอนไฟเบอร์ เรซิน และพลาสติก ถูกออกแบบสำหรับบรรจุก๊าซธรรมชาติอัด (CNG) หรือไฮโดรเจน ซึ่งถูกเรียกว่าถังความดันสูง แบบที่4 โดยในงานวิจัยนี้ได้ออกแบบให้รองรับการใช้งานที่ความดัน 250 บาร์ สำหรับการขนส่งก๊าซธรรมชาติอัด

คณะเทคโนโลยีการเกษตร
ทุเรียนเป็นพืชเศรษฐกิจที่สำคัญของประเทศไทยและเป็นสินค้าส่งออกที่มีปริมาณสูงที่สุดในโลก อย่างไรก็ตาม การผลิตทุเรียนให้มีคุณภาพสูงจำเป็นต้องอาศัยการดูแลสุขภาพของต้นทุเรียนให้แข็งแรงและปราศจากโรค เพื่อให้สามารถให้ผลผลิตได้อย่างมีประสิทธิภาพ และลดความเสียหายที่อาจเกิดขึ้นกับทั้งต้นและผลทุเรียน โรคที่พบได้บ่อยและสามารถแพร่กระจายได้อย่างรวดเร็ว มักเป็นโรคที่เกิดขึ้นบริเวณใบ ซึ่งส่งผลกระทบโดยตรงต่อการเจริญเติบโตของต้นทุเรียนและคุณภาพของผลผลิต การตรวจสอบและควบคุมโรคทางใบจึงเป็นปัจจัยสำคัญในการรักษาคุณภาพของทุเรียน งานวิจัยนี้มีวัตถุประสงค์เพื่อนำเทคโนโลยีการวิเคราะห์ภาพถ่ายร่วมกับปัญญาประดิษฐ์ (Artificial Intelligence: AI) มาประยุกต์ใช้ในการจำแนกโรคที่เกิดขึ้นในใบทุเรียน เพื่อให้เกษตรกรสามารถตรวจสอบโรคได้ด้วยตนเองโดยไม่ต้องอาศัยผู้เชี่ยวชาญ โดยจำแนกใบออกเป็น 3 ประเภท ได้แก่ ใบสุขภาพดี (Healthy: H) ใบที่ติดเชื้อแอนแทรคโนส (Anthracnose: A) และใบที่ติดเชื้อจุดสาหร่าย (Algal Spot: S) ทั้งนี้ ได้นำอัลกอริทึม Convolutional Neural Networks (CNN) ได้แก่ ResNet-50, GoogleNet และ AlexNet มาใช้ในการพัฒนาแบบจำลองเพื่อจำแนกประเภทของโรค ผลการทดลองพบว่า แบบจำลองที่ใช้ ResNet-50, GoogleNet และ AlexNet ให้ค่าความแม่นยำในการจำแนกใบเท่ากับ 93.57%, 93.95% และ 68.69% ตามลำดับ

คณะวิทยาศาสตร์
-