This study aims to investigate the co-fermentation process between lactic acid bacteria (LAB) and Saccharomyces cerevisiae in the production of sour beer, with a focus on its impact on product quality, including pH, organic acid content, sugar content, and sensory characteristics. In this experiment, selected LAB strains and S. cerevisiae were utilized under controlled fermentation conditions. The microbial ratio was optimized to enhance growth and the production of key compounds. The findings indicate that co-fermentation significantly reduces pH compared to fermentation with yeast alone. Furthermore, an increase in lactic acid was observed due to sugar consumption by LAB, contributing to the distinctive flavor profile of sour beer.
เบียร์เปรี้ยว (Sour Beer) เป็นเบียร์ประเภทหนึ่งที่มีรสเปรี้ยวเฉพาะตัว ซึ่งเกิดจากกระบวนการหมักที่ต่างจากเบียร์ทั่วไป ความเปรี้ยวของ เบียร์เปรี้ยวเกิดจากการใช้แบคทีเรียกรดแลกติก (Lactic acid bacteria) และยีสต์เช่น Lactobacillus และ Pediococcus,ในการหมักเพิ่มทางเลือกให้กับผู้บริโภค Sour Beer เป็นตัวเลือกที่น่าสนใจสำหรับคนที่ต้องการประสบการณ์รสชาติใหม่ๆ แตกต่างจากเบียร์รสขมทั่วไป โดยมีทั้งรสเปรี้ยวที่เบาและรสเข้มข้น การหมักและกระบวนการผลิตเฉพาะทาง การทำ Sour Beer ต้องใช้ความรู้และเทคนิคพิเศษทำให้ต้องมีการควบคุมกระบวนการหมักอย่างใกล้ชิดซึ่งส่งเสริมการพัฒนาทักษะและนวัตกรรมในอุตสาหกรรมการผลิตเบียร์ ผู้ผลิตต้องเข้าใจลักษณะของจุลินทรีย์ที่ใช้และรู้จักการควบคุมรสชาติ ทำให้ Sour Beerมีความสำคัญในการพัฒนาอุตสาหกรรมเบียร์ไปสู่ความสร้างสรรค์ใหม่ๆ

คณะวิทยาศาสตร์
This project presents the development of a "Smart Cat House" using Internet of Things (IoT) and image processing technology to facilitate and enhance the safety of cat care for owners. The infrastructure of the smart cat house consists of an ESP8266 board connected to an ESP32 CAM camera for cat monitoring, and an Arduino board that controls various sensors such as a motion sensor in the litter box, a DHT22 temperature and humidity sensor, an ultrasonic water and food level sensor, including a water supply system for cats, an automatic feeding system, and a ventilation system controlled by a DC FAN that adjusts its operation according to the measured temperature to maintain a suitable environment. There is also an IR sensor to detect the cat's entry into the litter box and an automatic sand changing system with a SERVO MOTOR. All systems are connected and controlled through the Blynk application, which can be used on mobile phones, allowing owners to monitor and care for their pets remotely. Cat detection and identification uses image processing technology from the ESP32 CAM camera in conjunction with YOLO (You Only Look Once), a high-performance object detection algorithm, to detect and distinguish between cats and people. Data from various sensors are sent to the Arduino board to control the operation of various devices in the smart cat house, such as turning lights on and off, automatically changing sand, adjusting temperature and humidity, feeding food and water at scheduled times, or ventilation. The use of a connection system via ESP8266 and the Blynk application makes it easy and convenient to control various devices. Owners can monitor and control the operation of the entire system from anywhere with internet access.

คณะสถาปัตยกรรม ศิลปะและการออกแบบ
In the world of blood donation, there are 2 types of people: those who donate blood and those who don't. Most campaigners emphasize how to persuade more people to donate blood and recruit more new blood donors. We believe that even though such focus is important, there're more critical aspects that might have been neglected, which is: for those who have already made up their minds to be blood doners, will they be successful in donating when the time comes? According to our studies, only 63 % of attempted doners are successful. Regrettably, 37 % has to go home disappointed as their bodies are not fit for the conditions required by Red Cross medical staff at blood donation centers (which include some most basic preparations such as low-fat food intake and 8-hours sleep on the night before). Our campaign, ‘Blood in Need, Buddy Indeed’, focuses on 2 aspects. Firstly, to persuade more people to donate blood. Secondly, for those who have made up their minds to donate blood, we will provide necessary support (both body and mind) so that they are fully prepared and successful in donating blood when the time comes via networks of systems, staffs and the newly designed and prototype of the application ‘Blood D’. Our campaign covers the whole ‘before/during/after’ experience of users (as blood doners). Support includes assessment of their current condition whether they are within the requirement of Red Cross Blood Bank. ‘Blood D’ will also provide relevant information on blood donating events, such as locations, and time booking. Once sign-up, the application “Blood D” will sent friendly reminder and clear infographic on how to prepare their bodies as daily notifications during the 7 days countdown. This is to ensure that the users’ blood will be ‘D’ (homophone of the Thai word ‘ดี’ which mean ‘good’ and at the same time playing on the word ‘ Buddy’) or be the ‘good blood’ that can save lives for those in need. After organizing 4 blood donation events both within and outside the KMITL. The numbers of successful blood doners have increased from 63 % to 78 % (this number is the average of 4 events, with the most successful event of 89%). The campaign has won the first runner up in national blood donation campaign competition. It is highly anticipated that once the application “Blood D” is fully launched, it will help increase the amount of blood collected up to 15% with the same numbers of existing doners.

คณะอุตสาหกรรมอาหาร
Spent hens are laying hens that are over 18 months to 2 years old and no longer productive. The texture of spent hen meat is significantly tougher compared to broiler chickens, capons, and native chickens. Therefore, to increase the value of spent hens, a study was conducted to modify the texture of the meat by restructuring it with carrageenan and tenderizing it by marinating it in bromelain solution at different concentrations. The experiment found that restructuring with carrageenan and using bromelain enzyme resulted in a newly formed product and significantly improved the tenderness of the meat compared to chicken meat that was not treated with carrageenan and bromelain enzyme.