This study aims to investigate the co-fermentation process between lactic acid bacteria (LAB) and Saccharomyces cerevisiae in the production of sour beer, with a focus on its impact on product quality, including pH, organic acid content, sugar content, and sensory characteristics. In this experiment, selected LAB strains and S. cerevisiae were utilized under controlled fermentation conditions. The microbial ratio was optimized to enhance growth and the production of key compounds. The findings indicate that co-fermentation significantly reduces pH compared to fermentation with yeast alone. Furthermore, an increase in lactic acid was observed due to sugar consumption by LAB, contributing to the distinctive flavor profile of sour beer.
เบียร์เปรี้ยว (Sour Beer) เป็นเบียร์ประเภทหนึ่งที่มีรสเปรี้ยวเฉพาะตัว ซึ่งเกิดจากกระบวนการหมักที่ต่างจากเบียร์ทั่วไป ความเปรี้ยวของ เบียร์เปรี้ยวเกิดจากการใช้แบคทีเรียกรดแลกติก (Lactic acid bacteria) และยีสต์เช่น Lactobacillus และ Pediococcus,ในการหมักเพิ่มทางเลือกให้กับผู้บริโภค Sour Beer เป็นตัวเลือกที่น่าสนใจสำหรับคนที่ต้องการประสบการณ์รสชาติใหม่ๆ แตกต่างจากเบียร์รสขมทั่วไป โดยมีทั้งรสเปรี้ยวที่เบาและรสเข้มข้น การหมักและกระบวนการผลิตเฉพาะทาง การทำ Sour Beer ต้องใช้ความรู้และเทคนิคพิเศษทำให้ต้องมีการควบคุมกระบวนการหมักอย่างใกล้ชิดซึ่งส่งเสริมการพัฒนาทักษะและนวัตกรรมในอุตสาหกรรมการผลิตเบียร์ ผู้ผลิตต้องเข้าใจลักษณะของจุลินทรีย์ที่ใช้และรู้จักการควบคุมรสชาติ ทำให้ Sour Beerมีความสำคัญในการพัฒนาอุตสาหกรรมเบียร์ไปสู่ความสร้างสรรค์ใหม่ๆ
คณะวิทยาศาสตร์
A new colorimetric assay for the rapid detection of tannic acid in beverage samples based on displacement phenomenon of aggregated gallic acid-modified platinum nanoparticles is developed for the first time. PtNPs were functionalized with gallic acid, promoting the formation of the green-hued aggregated nanoparticles. While colorimetry offers a rapid method for identifying tannic acid, challenges remain in sensitivity and accuracy of detection on the PtNPs colorimetric probe, particularly in the presence of anthocyanin interferences. To address this, we developed a sample preparation method to degrade anthocyanin in beverages. Tannic acid was easily displaced onto the gallic acid-coated PtNPs surfaces, causing dispersion and resulting in a visible color change from green to orange−brown. Under the optimal conditions, the colorimetric sensor exhibited a linear response in the range of 1−2,000 µmol L−1 (R2 = 0.9991). The limit of detection (LOD) and the limit of quantification (LOQ) were found at 0.02 and 0.09 µmol L−1, respectively. The proposed sensor expressed superior selectivity over other interfering substances and demonstrated excellent precision with a relative standard deviation (RSD) of 1.00%−3.36%. More importantly, recoveries ranging from 95.0−104.7% were obtained, indicating the capability of proposed colorimetric sensor to detect tannic acid rapidly and accurately in real beverage samples.
คณะเทคโนโลยีสารสนเทศ
Currently, the issue of developmental writing disabilities in children is a matter of great importance for school-age children. Diagnosing whether a child has developmental writing disabilities relies on writing skill assessments, which are administered to those seeking diagnosis and evaluated by medical professionals or experts. However, there are still limitations in the diagnostic process, which depends heavily on expert physicians, leading to a high demand for human resources. To address this, we have developed a method for scoring writing skill assessments using image processing technology, based on existing scoring criteria. Currently, three criteria are used for scoring: writing position, article format, and copying speed. We have also created a web application to make the system more accessible and easier to use.
คณะวิทยาศาสตร์
This special problem aims to compare the performance of machine learning methods in time series forecasting using lagged time periods as independent variables. The lagged periods are categorized into three groups: lagged by 10 units, lagged by 15 units, and lagged by 20 units. The study employs four machine learning methods: Decision Tree (DT), Random Forest (RF), K-Nearest Neighbors (KNN), and Support Vector Machine (SVM). The time series data simulated as independent variables diverse including characteristics: Random Walk data, Trending data, and Non-Linear data, with sample sizes of 100, 300, 500, and 700. The research methodology involves splitting the data into 90% for training and 10% for testing. Simulations and analysis are performed using the R programming language, with 1,000 iterations conducted. The results are evaluated based on the average mean squared error (AMSE) and the average mean absolute percentage error (AMAPE) are calculated to identify the best performing method. The research findings revealed that for Random Walk data, the best performing methods are Random Forest and Support Vector Machine. For Trend data, the best performing methods are Random Forest. For Non-Linear data, the best performing methods are Support Vector Machine. When tested with real-world data, the results show that for the Euro-to-Thai Baht exchange rate, the best methods are Random Forest and Support Vector Machine. For the S&P 500 Index in USD, the best performing methods are Random Forest. For the Bank of America Corp Index in USD, the best performing methods are Support Vector Machine.