KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

Co-fermentation of lactic acid bacteria and Saccharomyces cerevisiae to produce sour beer

Abstract

This study aims to investigate the co-fermentation process between lactic acid bacteria (LAB) and Saccharomyces cerevisiae in the production of sour beer, with a focus on its impact on product quality, including pH, organic acid content, sugar content, and sensory characteristics. In this experiment, selected LAB strains and S. cerevisiae were utilized under controlled fermentation conditions. The microbial ratio was optimized to enhance growth and the production of key compounds. The findings indicate that co-fermentation significantly reduces pH compared to fermentation with yeast alone. Furthermore, an increase in lactic acid was observed due to sugar consumption by LAB, contributing to the distinctive flavor profile of sour beer.

Objective

เบียร์เปรี้ยว (Sour Beer) เป็นเบียร์ประเภทหนึ่งที่มีรสเปรี้ยวเฉพาะตัว ซึ่งเกิดจากกระบวนการหมักที่ต่างจากเบียร์ทั่วไป ความเปรี้ยวของ เบียร์เปรี้ยวเกิดจากการใช้แบคทีเรียกรดแลกติก (Lactic acid bacteria) และยีสต์เช่น Lactobacillus และ Pediococcus,ในการหมักเพิ่มทางเลือกให้กับผู้บริโภค Sour Beer เป็นตัวเลือกที่น่าสนใจสำหรับคนที่ต้องการประสบการณ์รสชาติใหม่ๆ แตกต่างจากเบียร์รสขมทั่วไป โดยมีทั้งรสเปรี้ยวที่เบาและรสเข้มข้น การหมักและกระบวนการผลิตเฉพาะทาง การทำ Sour Beer ต้องใช้ความรู้และเทคนิคพิเศษทำให้ต้องมีการควบคุมกระบวนการหมักอย่างใกล้ชิดซึ่งส่งเสริมการพัฒนาทักษะและนวัตกรรมในอุตสาหกรรมการผลิตเบียร์ ผู้ผลิตต้องเข้าใจลักษณะของจุลินทรีย์ที่ใช้และรู้จักการควบคุมรสชาติ ทำให้ Sour Beerมีความสำคัญในการพัฒนาอุตสาหกรรมเบียร์ไปสู่ความสร้างสรรค์ใหม่ๆ

Other Innovations

THE DEVELOPMENT OF LEARNING ACHIEVEMENT THE USE OF THE INTEGRATED FARMING SYSTEM BOARD GAME FOR THIRD-YEAR VOCATIONAL CERTIFICATE STUDENTS AT RATCHABURI COLLEGE OF AGRICULTURE AND TECHNOLOGY

คณะครุศาสตร์อุตสาหกรรมและเทคโนโลยี

THE DEVELOPMENT OF LEARNING ACHIEVEMENT THE USE OF THE INTEGRATED FARMING SYSTEM BOARD GAME FOR THIRD-YEAR VOCATIONAL CERTIFICATE STUDENTS AT RATCHABURI COLLEGE OF AGRICULTURE AND TECHNOLOGY

This study aims to develop a board game for teaching Integrated Farming System and to examine the learning achievement of third-year vocational certificate students at Ratchaburi College of Agriculture and Technology who used the board game as a learning tool. The research instruments included a board game developed using the Educational Boardgame Design Canvas. The board game is a strategic planning game consisting of five game boards, and 166 cards categorized into four types: 30 event cards, 60 special action cards, 16 character cards, and 60 production cards. It also includes 180 resource tokens of six kinds: 60 water tokens, 60 soil tokens, 45 plant product tokens, 45 animal product tokens, 45 aquatic product tokens, and 45 currency tokens. Additional components include one die and five player aid sheets. The game emphasizes planning and decision-making in integrated farming to maximize production and achievement points under game conditions and simulated scenarios. Research tools also included pre-and post-tests and a satisfaction questionnaire. The results indicated that students’ average scores significantly increased at the .05 level after using the board game, with the average pre-test score at 6.54 and the post-test score rising to 17.71. Additionally, an analysis of student satisfaction with board game-based learning revealed a high level of satisfaction (mean score = 4.45). The highest-rated aspects were the teacher’s implementation of post-tests (mean score = 4.69) and the engaging and diverse teaching methods used (mean score = 4.66).

Read more
Investigation variable star classification through light curve analysis using machine learning approach

คณะวิทยาศาสตร์

Investigation variable star classification through light curve analysis using machine learning approach

With the development of space technology, wide-field sky surveys using telescopes have expanded the range of new data available for time-domain astronomical research. Traditional data analysis methods can no longer respond quickly and accurately enough to the growing volume of data. Thus, classifying time-series data, such as light curves, has become a significant challenge in the era of big data. In modern times, analyzing light curves has become essential for using machine learning techniques to handle and filter through massive amounts of data. Machine learning algorithms can be divided into two categories: shallow learning and deep learning. Numerous researchers have proposed and developed a variety of algorithms for light curve classification. In this study, we experimented with Support Vector Machine (SVM) and XGBoost, which are shallow machine learning algorithms, as well as 1D-CNN and Long Short-Term Memory (LSTM), which are deep learning algorithms, which are branches of deep machine learning, to classify variable stars. The training and testing data used in this study were from the Optical Gravitational Lensing Experiment-III (OGLE-III), consisting of variable star data from the Large Magellanic Cloud (LMC), categorized into five main classes: Classical Cepheids, δ Scutis, eclipsing binaries, RR Lyrae stars, and Long-period variables. The results demonstrate the performance analysis of each machine learning algorithm type applied to light curve data, while also highlighting the accuracy and statistical metrics of the algorithms used in the experiments.

Read more
Effective Removal of Dental Biofilm from Periodontal Pathogens Using DNase I and Engineered Human Antimicrobial Peptide D-LL-31: A Potential Mouthwash Solution

คณะทันตแพทยศาสตร์

Effective Removal of Dental Biofilm from Periodontal Pathogens Using DNase I and Engineered Human Antimicrobial Peptide D-LL-31: A Potential Mouthwash Solution

Aggregatibacter actinomycetemcomitans is a key pathogen in periodontal disease, damaging periodontal ligaments and alveolar bone through biofilm formation. D-LL-31, an engineered antimicrobial peptide, exhibits superior biofilm-killing ability compared to conventional treatments, while DNase I enhances its efficacy by disrupting the biofilm matrix. This study evaluated the combined effects of D-LL-31 and DNase I on A. actinomycetemcomitans biofilms. Results showed that D-LL-31 effectively eradicated biofilms, and its combination with DNase I further enhanced biofilm disruption without cytotoxicity to gingival epithelial cells. The D-LL-31 and DNase I combination shows potential for development as a mouthwash to improve oral health and combat periodontal disease.

Read more