ปัญหาพิเศษนี้มีวัตถุประสงค์เพื่อเปรียบเทียบประสิทธิภาพของวิธีการเรียนรู้ด้วยเครื่อง ในการพยากรณ์ข้อมูลอนุกรมเวลา โดยใช้วิธีช่วงเวลาที่ล่าช้ากว่ากัน แบ่งออกเป็น 3 ช่วงเวลา คือ ช่วงเวลาที่ช้ากว่ากัน 10 หน่วย ช่วงเวลาที่ช้ากว่ากัน 15 หน่วย และช่วงเวลาที่ช้ากว่ากัน 20 หน่วย มาใช้เป็นตัวแปรอิสระ และใช้วิธีการเรียนรู้ด้วยเครื่องมีทั้งหมด 4 วิธี ได้แก่ วิธีต้นไม้ตัดสินใจ วิธีป่าสุ่ม วิธีเพื่อนบ้านใกล้เคียงสุด K อันดับ และวิธีซัพพอร์ตเวกเตอร์แมชชีน โดยการจำลองข้อมูลอนุกรมเวลาที่เป็นตัวแปรอิสระที่มีลักษณะหลากหลาย ได้แก่ ข้อมูลที่มีลักษณะการเดินแบบสุ่ม ข้อมูลที่มีลักษณะมีแนวโน้ม และข้อมูลที่มีลักษณะไม่เชิงเส้น ซึ่งมีขนาดตัวอย่าง 100, 300, 500 และ 700 วิธีดำเนินการวิจัยนี้ทำการแบ่งข้อมูลเป็นฝึกฝน 90% และข้อมูลทดสอบ 10% โดยใช้โปรแกรมอาร์ในการจำลองและวิเคราะห์ข้อมูล โดยทำซ้ำเป็นจำนวน 1000 รอบ และทำการหาค่าเฉลี่ยของค่าคลาดเคลื่อนกำลังสองเฉลี่ย และค่าเฉลี่ยของค่าเฉลี่ยเปอร์เซ็นต์ความคลาดเคลื่อนสัมบูรณ์ที่ต่ำที่สุดเพื่อแสดงว่าวิธีใดดีที่สุด ผลการวิจัยพบว่าข้อมูลมีลักษณะการเดินแบบสุ่มวิธีที่ดีสุด คือวิธีป่าสุ่มและวิธีซัพพอร์ตเวกเตอร์แมชชีน ข้อมูลมีลักษณะแนวโน้มวิธีที่ดีสุด คือวิธีป่าสุ่มและข้อมูลมีลักษณะไม่เชิงเส้นวิธีที่ดีสุด คือวิธีซัพพอร์ตเวกเตอร์แมชชีน และเมื่อนำมาทดสอบกับข้อมูลจริง พบว่าข้อมูลค่าเงิน 1 ยูโร ต่อบาทวิธีที่ดีสุด คือวิธีป่าสุ่มและวิธีซัพพอร์ตเวกเตอร์แมชชีน ข้อมูลดัชนี S&P 500 ในรูปของดอลลาร์สหรัฐวิธีที่ดีสุด คือวิธีป่าสุ่ม และข้อมูลดัชนี Bank of America Corp ในรูปของดอลลาร์สหรัฐวิธีที่ดีสุด คือวิธีซัพพอร์ตเวกเตอร์แมชชีน
ปัจจุบันเทคโนโลยีสารสนเทศมีบทบาทสำคัญต่อการดำรงชีวิตของมนุษย์ ทำให้มีการพัฒนาเทคโนโลยีเพื่ออำนวยความสะดวกต่อการดำรงชีวิตของมนุษย์ มีแหล่งข้อมูลข่าวสารที่ทันสมัย รวมถึงแหล่งข้อมูลขนาดใหญ่ที่เรียกกว่าข้อมูลมหัต (Big Data) เป็นข้อมูลที่มีปริมาณมาก (Volume) มีความเปลี่ยนแปลงอย่างรวดเร็วอยู่ตลอดเวลา (Velocity) และมีความหลากหลายสูง (Variety) เนื่องจากคุณสมบัติเหล่านี้จัดเป็นอุปสรรคหรือปัญหาของ ข้อมูลขนาดใหญ่ที่ไม่สามารถนำข้อมูลมาใช้ประโยชน์ได้ทันทีจึงต้องมีกระบวนการจัดการข้อมูล ขนาดใหญ่เสียก่อน โดยใช้วิธีการเรียนรู้ของเครื่อง (Machine Learning) เข้ามาเกี่ยวข้อง การเรียนรู้ด้วยเครื่อง (Machine Learning) คือวิทยาการคอมพิวเตอร์ประเภทหนึ่ง เกี่ยวข้องกับการศึกษาและสร้างอัลกอริทึมที่สามารถเรียนรู้ข้อมูลและทำนายข้อมูลได้ สามารถแบ่งการเรียนรู้ของเครื่องออกเป็น 2 กลุ่มประกอบด้วย การเรียนรู้แบบไม่มีผู้สอน (Unsupervised Learning) คือการวิเคราะห์ข้อมูลที่ไม่มีตัวแปรตามหรือคำตอบกำกับไว้ มุ่งเน้นไปที่การหาความสัมพันธ์ระหว่างข้อมูลและการแบ่งกลุ่มเพื่อลดมิติของข้อมูล เช่น การวิเคราะห์แบ่งกลุ่ม (Cluster Analysis) ซึ่งได้รับความนิยมใช้เพื่อลดมิติของข้อมูลและการแบ่งกลุ่มข้อมูลด้วยคุณลักษณะต่าง ๆ และการเรียนรู้แบบมีผู้สอน (Supervised Learning) คือการวิเคราะห์ข้อมูลที่มีตัวแปรตามหรือคำตอบกำกับไว้ ถ้าตัวแปรตามเป็นเชิงปริมาณจะเป็นการพยากรณ์ข้อมูลอนุกรมเวลา (Time series) แต่ถ้าตัวแปรตามเป็นเชิงคุณภาพจะเป็นการวิเคราะห์การจำแนก (Classification) โดยเทคนิคที่นิยมใช้อย่างแพร่หลายได้แก่ การถดถอยโลจิสติกส์ (Logistic Regression) ต้นไม้ตัดสินใจ (Decision Tree) เทคนิคป่าสุ่ม (Random Forest) และโครงข่ายประสาทเทียม (Artificial Neural Network) เป็นต้น การจำแนกถูกนำมาประยุกต์ใช้ในงานวิจัยในหลายด้าน (วริทธิ์พล , 2565) ข้อมูลอนุกรมเวลา (Time Series) คือ ชุดข้อมูลที่รวบรวมและจัดเก็บตามลำดับ ต่อเนื่องกันภายใต้การเพิ่มขึ้นของเวลา โดยข้อมูลดังกล่าวจะถูกเก็บรวบรวมอย่างต่อเนื่องในระยะเวลาติดต่อกัน ตามช่วงเวลาที่ต้องการ เช่น ข้อมูลราคาทองคำ ข้อมูลปริมาณน้ำในเขื่อน ซึ่งจะถูกบันทึกข้อมูลเป็นวัน ในบางกรณี การจัดเก็บข้อมูลอาจมีลักษณะการจัดเก็บแบบเป็นช่วงเวลาต่อเนื่องกัน เพื่อสร้างตัวแบบอนุกรมเวลา (Time Series Model) ในการทำนายเหตุการณ์ที่จะเกิดขึ้นในอนาคตโดยการวิเคราะห์อนุกรมเวลา (Time Series Analysis) ในการวิเคราะห์อนุกรมเวลา ส่วนใหญ่ข้อมูลอนุกรมเวลาเป็นข้อมูลที่เยอะ ซับซ้อน และมีการเปลี่ยนแปลงอยู่ตลอดเวลา จึงทำให้ยากต่อการหาวิธีที่ดีที่สุดในการพยากรณ์ จึงได้มีการนำการเรียนรู้ด้วยเครื่องมาใช้ในการวิเคราะห์ข้อมูล เพราะ วิธีการเรียนรู้ด้วยเครื่องมีประสิทธิภาพในการวิเคราะห์ข้อมูลอนุกรมเวลามากกว่า (พรทิวา , 2564) โดยทั่วไปในการวิเคราะห์อนุกรมเวลาจะใช้ตัวแปรเพียงตัวเดียว แต่ในวิธีของการเรียนรู้ด้วยเครื่องจะมีการใช้ตัวแปรอิสระ ( ) มาช่วยในการพยากรณ์ ในการวิจัยครั้งนี้จึงสนใจนำช่วงเวลาที่ช้ากว่ากัน (Lag) ของข้อมูลอนุกรมเวลา เข้ามาเป็นตัวแปรอิสระ โดยตัวแปรตาม ( ) คือ ข้อมูลอนุกรมเวลาชุดเดิม แล้วจึงนำไปวิเคราะห์ด้วยวิธีการเรียนรู้ด้วยเครื่อง ประกอบด้วย วิธีต้นไม้ตัดสินใจ (Decision Tree) ป่าสุ่ม (Random Forest) วิธีเพื่อนบ้านใกล้เคียงสุด K อันดับ (K Nearest-Neighbor: KNN) และวิธีซัพพอร์ตเวกเตอร์แมชชีน (Support Vector Machine) โดยแต่ละวิธีจะทำการศึกษาเกี่ยวกับการวัดความถูกต้องและความผิดพลาดในการจำแนกข้อมูล Lai et al. (2023) งานวิจัยนี้เกี่ยวกับการพยากรณ์สถานการณ์ปัจจุบันของโควิด 19 โดยใช้ข้อมูลน้ำเสีย ให้ผู้ป่วยโควิด 19 เป็นตัวแปร และให้ปริมาณไวรัสในตัวอย่างน้ำเสียเป็นตัวแปร ผู้วิจัยไม่ทราบตัวแปร จึงได้ใช้วิธีช่วงเวลาที่ช้ากว่ากัน (Lag) เอามาช่วยในการพยากรณ์ตัวแปร พอทราบค่าได้นำไปพยากรณ์ด้วยวิธีการเรียนรู้ด้วยเครื่อง ประกอบไปด้วย แบบจำลองอารีแมกซ์ (Autoregressive Integrated Moving Average with Exogenous Variables : ARIMAX) และการเรียนรู้ด้วยเครื่องจากชุดข้อมูลแบบลำดับเวลา (Time Series Machine Learning : TSML) โดยเทคนิคที่ดีที่สุด คือ วิธีการเรียนรู้ด้วยเครื่องจากชุดข้อมูลแบบลำดับเวลา พรทิวา (2564) งานวิจัยนี้เกี่ยวกับระบบวิเคราะห์ข้อมูลอนุกรมเวลาด้วยเทคนิคทางการเรียนรู้ของเครื่อง โดยเปรียบเทียบวิธีพยากรณ์ออกเป็น 3 เทคนิคประกอบไปด้วยเทคนิควิเคราะห์การถดถอยพหุคูณ (Multiple Linear Regression) วิธีต้นไม้ตัดสินใจ (Decision Tree) และ วิธีป่าสุ่ม (Random Forest) โดยใช้การคัดเลือกเทคนิคที่เหมาะสมที่สุดสำหรับการพยากรณ์โดยใช้เกณฑ์ค่าเฉลี่ยของค่าสัมบูรณ์เปอร์เซ็นต์ความคลาดเคลื่อน (Mean Absolute Percentage Error, MAPE) ต่ำที่สุดผลวิจัยพบว่าการเปรียบเทียบเทคนิคระหว่างวิธีต้นไม้ตัดสินใจ วิธีป่าไม้สุ่ม และ การถดถอยพหุคูณ สำหรับการพยากรณ์ยอดขายรวมรายวันแยกตามรายสินค้าและจำนวนผู้เสียชีวิตรายใหม่จาก สถานการณ์ COVID-19 ในประเทศไทยพบว่าเทคนิคให้ค่า MAPE เฉลี่ยต่ำที่สุดคือ เทคนิคป่าสุ่ม Kayode-Ajala. (2022) งานวิจัยนี้เกี่ยวกับการประยุกต์ใช้อัลกอริทึมการเรียนรู้ของเครื่อง ในการตรวจจับเว็บไซต์ที่เป็นแฟร์ชิ่ง ซึ่งใช้วิธีการเรียนรู้ด้วยเครื่องประกอบด้วย วิธีซัพพอร์ตเวกเตอร์แมชชีน (Support Vector Machine) วิธีเพื่อนบ้านใกล้เคียงสุด K อันดับ (K Nearest-Neighbor: KNN) วิธีต้นไม้ตัดสินใจ (Decision Trees) และ วิธีป่าสุ่ม (Random Forest) ซึ่งวิธีที่ดีที่สุดคือ วิธีเพื่อนบ้านใกล้เคียงสุด K อันดับ Ballı (2021) งานวิจัยนี้เกี่ยวกับการวิเคราะห์ข้อมูลของการระบาดโควิด-19 และการพยากรณ์จำนวนผู้ติดเชื้อรวมในระยะสั้นๆ โดยใช้เทคนิคการเรียนรู้ด้วยเครื่องประกอบวิธีการถดถอยเชิงเส้น (Linear regression) วิธีโครงข่ายประสาทเทียมแบบเพอร์เซ็ปตรอนหลายชั้น (multi-layer perceptron) วิธีป่าสุ่ม (random forest) วิธีนาอีฟ เบย์ (Naive Bayes) และ วิธีซัพพอร์ตเวกเตอร์แมชชีน (Support Vector Machine) พบว่าเทคนิคให้ค่า MAPE เฉลี่ยต่ำที่สุดคือ วิธีซัพพอร์ตเวกเตอร์แมชชีน Bemthuis et al. (2023) งานวิจัยนี้เกี่ยวกับระบบสนับสนุนการตัดสินใจ (Decision Support Systems) กำลังพัฒนาไปในทิศทางที่ซับซ้อนมากขึ้น โดยมุ่งหวังที่จะทำให้การตัดสินใจเป็นไปโดยอัตโนมัติมากที่สุด จึงวิธีการที่ใช้เทคนิคการจำแนกประเภทด้วยต้นไม้การตัดสินใจ และเปรียบเทียบประสิทธิภาพกับผลลัพธ์ที่ได้จากการใช้เทคนิคสนับสนุนเวกเตอร์แมชชีน การทดลองของเราพบว่า วิธีการของเรามีความแม่นยำและความยืดหยุ่นในด้านการดึงกฎทางธุรกิจ ต้นไม้การตัดสินใจ จากการศึกษางานวิจัยที่เกี่ยวข้องทางผู้วิจัยจึงสนใจศึกษาการเปรียบเทียบประสิทธิภาพของวิธีการเรียนรู้ด้วยเครื่องจากข้อมูลอนุกรมเวลา โดยวิธีการช่วงเวลาที่ช้ากว่ากัน ซึ่งประกอบไปด้วยวิธีต้นไม้ตัดสินใจ (Decision Tree) วิธีป่าสุ่ม (Random Forest) วิธีเพื่อนบ้านใกล้เคียงสุด K อันดับ (K Nearest-Neighbor: KNN) และวิธีซัพพอร์ตเวกเตอร์แมชชีน (Support Vector Machine) โดยพิจารณาค่าเฉลี่ยของค่าคาดเคลื่อนกำลังสองเฉลี่ย (Mean Square Error: AMSE) และค่าเฉลี่ยของค่าเฉลี่ยเปอร์เซ็นต์ความคลาดเคลื่อนสัมบูรณ์ (Mean Absolute Percentage Error: AMAPE) เป็นเกณฑ์ในการวัดประสิทธิภาพของแบบจำลอง และเป็นแนวทางการในการเปรียบเทียบประสิทธิภาพด้วยวิธีการเรียนรู้ด้วยเครื่อง เพื่อตัดสินใจในการเลือกแบบจำลองที่ดีที่สุด

คณะเทคโนโลยีการเกษตร
การวิจัยครั้งนี้มีวัตถุประสงค์พัฒนาเว็บไซต์เก็บรวบรวมข้อมูลของ Young Smart Farmer จังหวัดจันทบุรี ใช้แบบสัมภาษณ์เก็บจากกลุ่มตัวอย่าง จำนวน 30 ราย เพื่อการพัฒนาเว็บไซต์ โดยนำข้อมูลที่ได้มาจัดหมวดหมู่และใช้ข้อมูลดังกล่างในการพัฒนาเว็บไซต์เพื่อเผยแพร่แก่เกษตรกรและบุคคลที่สนใจ จากนั้นดำเนินการศึกษาความพึงพอใจต่อเว็บไซต์ โดยใช้แบบสอบถามวิเคราะห์ข้อมูลด้วยสถิติเชิงพรรณนา ได้แก่ ค่าความถี่ (Frequency) ค่าร้อยละ (Percentage) ค่าเฉลี่ย (Mean) และส่วนเบี่ยงเบนมาตรฐาน (Standard deviation) ผลการศึกษาพบว่า กลุ่มตัวอย่างเป็นเพศชายและเพศหญิงเท่ากัน มีอายุอยู่ระหว่าง 36-40 ปีมากที่สุด ร้อยละ 50.00 เป็น Young Smart Farmer อำเภอขลุง แหลมสิงห์ และแก่งหางแมวมากที่สุด ร้อยละ 13.33 สำเร็จการศึกษา ระดับปริญญาตรีหรือเทียบเท่า ร้อยละ 60.00 ประกอบอาชีพหลักเป็นเกษตรกร ร้อยละ 73.33 ผลการศึกษาความพึงพอใจต่อเว็บไซต์เพื่อเก็บรวบรวมข้อมูล Young Smart Farmer พบว่ากลุ่มตัวอย่างพึงพอใจอยู่ในระดับมากที่สุดทุกด้าน โดยเรียงลำดับได้ดังนี้ 1) ด้านการใช้งานเว็บไซต์ (ค่าเฉลี่ย 4.97) 2) ด้านความพึงพอใจโดยภาพรวม (ค่าเฉลี่ย 4.93) 3) ด้านคุณภาพของเนื้อหา (ค่าเฉลี่ย 4.91) 4) ด้านประโยชน์และการนำไปใช้ (ค่าเฉลี่ย 4.87) และ 5) ด้านการออกแบบและการจัดรูปแบบมากที่สุด (ค่าเฉลี่ย 4.85) ตามลำดับ

คณะอุตสาหกรรมอาหาร
โยเกิร์ตจากข้าวไม่ขัดสีที่ผสานเม็ดป็อบ Trio Probiotic และซีเรียลข้าวเพื่อสุขภาพ อุดมด้วยสารแอนโทไซยานินที่ช่วยชะลอการเสื่อมของร่างกาย พร้อมโปรไบโอติก 3 ชนิด ที่ส่งเสริมสมดุลลำไส้และระบบขับถ่ายให้ทำงานอย่างมีประสิทธิภาพ ผลิตภัณฑ์นี้ยังเป็นมิตรต่อสิ่งแวดล้อม ด้วยการนำกากข้าวจากกระบวนการผลิตมาพัฒนาเป็นซีเรียลเพื่อสุขภาพ อร่อยและมีประโยชน์ครบถ้วนในถ้วยเดียว

คณะวิทยาศาสตร์
อัลบูมินสมาร์ทเทสท์ เป็นนวัตกรรมอุปกรณ์ตรวจคัดกรองโรคไตโดยการตรวจวัดโปรตีนอัลบูมินในปัสสาวะด้วยมือถือ ประกอบไปด้วย (1) ชุดภาชนะและน้ำยาทดสอบ ที่มีความจำเพาะเจาะจงกับอัลบูมิน และ (2) โทรศัพท์มือถือที่ลงแอพพลิเคชันชื่อ “อัลบูมินสมาร์ทเทสท์” โดยขั้นตอนการตรวจวัดจะนำน้ำยาทดสอบหยดลงบนตัวอย่างปัสสาวะ อัลบูมินจะทำปฏิกิริยาเคมีกับน้ำยาทดสอบ แล้วใช้มือถือถ่ายรูปสีของผลิตภัณฑ์ที่เกิดขึ้น จากนั้นแอพพลิเคชันจะประมวลผลภาพเพื่อเปลี่ยนความเข้มสีของผลิตภัณฑ์ให้เป็นความเข้มข้นของอัลบูมิน รายงานผลผ่านหน้าจอมือถือ การตรวจวัดเสร็จสิ้นภายใน 3 นาทีสามารถทดลองได้สะดวก รวดเร็ว ผู้ทดสอบทำได้ด้วยตนเอง