KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

Website design to help graduates manage food expenses and compliance with proper nutritional principles

Abstract

With the current cost of living situation in Thailand continuously rising, many recent graduates face challenges in managing their expenses in alignment with the increasing living costs. Food expenses, even for common street food, continue to surge with no sign of decreasing, despite improvements in raw material costs. Pay-Attention is a website platform designed to help recent graduates gain insights into managing and optimizing their food expenses effectively. It provides guidance on how to spend wisely, ensuring cost-effectiveness while maintaining adequate daily nutritional intake, without falling into monotonous eating habits.

Objective

ด้วยสถานการณ์ “ค่าครองชีพ” ของประเทศไทยในปัจจุบันมีแนวโน้มพุ่งขึ้นสูงเรื่อยๆ นับตั้งแต่ ยุคหลังโควิด-19 แต่ฐานเงินเดือนและรายได้ของนักศึกษาจบใหม่ ก็ยังคงมีฐานเริ่มต้นเหมือนเดิม ไม่ต่างจากหลายปีก่อน เป็นผลทำให้ประชากรที่พึ่งสำเร็จการศึกษา ในประเทศไทยจำนวนไม่น้อย ประสบกับปัญหาเรื่องการจัดการค่าใช้จ่าย ให้สอดคล้องกับค่าครองชีพอย่างเหมาะสมในปัจจุบัน ทั้งค่าใช้จ่ายคงที่ และค่าใช้จ่ายผันแปร ที่แปรเปลี่ยนไปตามวิถีชีวิตของแต่ละคน มากน้อย ตามความต้องการและรสนิยม ซึ่งเป็นค่าใช้จ่ายที่ต้องระวังและควบคุมการใช้จ่ายอย่างมีสติเสมอโดยเฉพาะค่าใช้จ่ายเรื่องอาหารที่แม้แต่ตามสั่งทั่วไปก็พุ่งสูงขึ้นเรื่อยเรื่อยไม่มีท่าทีจะลดลงแม้ต้นทุนวัตถุดิบจะปรับปรุงก็ตาม

Other Innovations

Graphic design for vending machine

คณะสถาปัตยกรรม ศิลปะและการออกแบบ

Graphic design for vending machine

Design a graphic concept for a vending machine and its surrounding area (5x6 meters) featuring INGU skincare products

Read more
A Comparison of The Performance of Machine Learning Methods on Time Series Data Using Lagged Time Intervals

คณะวิทยาศาสตร์

A Comparison of The Performance of Machine Learning Methods on Time Series Data Using Lagged Time Intervals

This special problem aims to compare the performance of machine learning methods in time series forecasting using lagged time periods as independent variables. The lagged periods are categorized into three groups: lagged by 10 units, lagged by 15 units, and lagged by 20 units. The study employs four machine learning methods: Decision Tree (DT), Random Forest (RF), K-Nearest Neighbors (KNN), and Support Vector Machine (SVM). The time series data simulated as independent variables diverse including characteristics: Random Walk data, Trending data, and Non-Linear data, with sample sizes of 100, 300, 500, and 700. The research methodology involves splitting the data into 90% for training and 10% for testing. Simulations and analysis are performed using the R programming language, with 1,000 iterations conducted. The results are evaluated based on the average mean squared error (AMSE) and the average mean absolute percentage error (AMAPE) are calculated to identify the best performing method. The research findings revealed that for Random Walk data, the best performing methods are Random Forest and Support Vector Machine. For Trend data, the best performing methods are Random Forest. For Non-Linear data, the best performing methods are Support Vector Machine. When tested with real-world data, the results show that for the Euro-to-Thai Baht exchange rate, the best methods are Random Forest and Support Vector Machine. For the S&P 500 Index in USD, the best performing methods are Random Forest. For the Bank of America Corp Index in USD, the best performing methods are Support Vector Machine.

Read more
Comparison of greenhouse system optimum to potted petunia production

คณะเทคโนโลยีการเกษตร

Comparison of greenhouse system optimum to potted petunia production

-

Read more