Spent coffee grounds (SCG) are a byproduct of the coffee brewing process, and their quantity continues to increase due to the growing global coffee consumption. SCG contain beneficial compounds such as polysaccharides, dietary fibers, and antioxidants, which can be utilized in various applications, including prebiotic extraction. This study focuses on extracting prebiotics from SCG using acid hydrolysis and enzymatic hydrolysis methods to evaluate their potential in promoting the growth of beneficial gut microorganisms. The expected results of this research include adding value to coffee industry waste, reducing organic waste, and providing a sustainable approach to developing prebiotic products for use in the food and health industries. Furthermore, this study aligns with sustainable resource utilization and environmentally friendly practices.
กาแฟเป็นหนึ่งในสินค้าทางการเกษตรที่มีการบริโภคและผลิตเป็นจำนวนมากทั่วโลก ส่งผลให้เกิดของเสียจากกระบวนการผลิตอย่าง “กากกาแฟ” ในปริมาณมหาศาล กากกาแฟมักถูกทิ้งเป็นขยะอินทรีย์ ซึ่งอาจส่งผลกระทบต่อสิ่งแวดล้อมโดยตรงและทางอ้อม อย่างไรก็ตาม กากกาแฟมีสารประกอบที่เป็นประโยชน์ เช่น โพลีแซ็กคาไรด์ เส้นใยอาหาร และสารฟีนอลิก ซึ่งสามารถนำมาใช้ประโยชน์ในหลายด้าน เช่น การผลิตปุ๋ยหมัก การสกัดสารต้านอนุมูลอิสระ และการผลิตพลังงานชีวภาพ หนึ่งในแนวทางที่ได้รับความสนใจคือการสกัดพรีไบโอติกจากกากกาแฟ เนื่องจากพรีไบโอติกมีบทบาทสำคัญในการส่งเสริมสุขภาพทางเดินอาหาร โดยช่วยกระตุ้นการเจริญเติบโตของจุลินทรีย์ที่มีประโยชน์ เช่น แลคโตบาซิลลัสและบิฟิโดแบคทีเรีย ซึ่งช่วยเสริมภูมิคุ้มกันและลดความเสี่ยงของโรคต่าง ๆ การนำกากกาแฟมาใช้ในการสกัดพรีไบโอติกจึงเป็นแนวทางที่ไม่เพียงช่วยลดปริมาณขยะและใช้ทรัพยากรอย่างมีประสิทธิภาพ แต่ยังเป็นวิธีที่ยั่งยืนและเป็นมิตรต่อสิ่งแวดล้อม

คณะสถาปัตยกรรม ศิลปะและการออกแบบ
Design a graphic concept for a vending machine and its surrounding area (5x6 meters) featuring INGU skincare products

คณะทันตแพทยศาสตร์
Aggregatibacter actinomycetemcomitans is a key pathogen in periodontal disease, damaging periodontal ligaments and alveolar bone through biofilm formation. D-LL-31, an engineered antimicrobial peptide, exhibits superior biofilm-killing ability compared to conventional treatments, while DNase I enhances its efficacy by disrupting the biofilm matrix. This study evaluated the combined effects of D-LL-31 and DNase I on A. actinomycetemcomitans biofilms. Results showed that D-LL-31 effectively eradicated biofilms, and its combination with DNase I further enhanced biofilm disruption without cytotoxicity to gingival epithelial cells. The D-LL-31 and DNase I combination shows potential for development as a mouthwash to improve oral health and combat periodontal disease.

คณะเทคโนโลยีการเกษตร
Durian is a crucial economic crop of Thailand and one of the most exported agricultural products in the world. However, producing high-quality durian requires maintaining the health of durian trees, ensuring they remain strong and disease-free to optimize productivity and minimize potential damage to both the tree and its fruit. Among the various diseases affecting durian, foliar diseases are among the most common and rapidly spreading, directly impacting tree growth and fruit quality. Therefore, monitoring and controlling leaf diseases is essential for preserving durian quality. This study aims to apply image analysis technology combined with artificial intelligence (AI) to classify diseases in durian leaves, enabling farmers to diagnose diseases independently without relying on experts. The classification includes three categories: healthy leaves (H), leaves infected with anthracnose (A), and leaves affected by algal spot (S). To develop the classification model, convolutional neural network (CNN) algorithms—ResNet-50, GoogleNet, and AlexNet—were employed. Experimental results indicate that the classification accuracy of ResNet-50, GoogleNet, and AlexNet is 93.57%, 93.95%, and 68.69%, respectively.