Spent coffee grounds (SCG) are a byproduct of the coffee brewing process, and their quantity continues to increase due to the growing global coffee consumption. SCG contain beneficial compounds such as polysaccharides, dietary fibers, and antioxidants, which can be utilized in various applications, including prebiotic extraction. This study focuses on extracting prebiotics from SCG using acid hydrolysis and enzymatic hydrolysis methods to evaluate their potential in promoting the growth of beneficial gut microorganisms. The expected results of this research include adding value to coffee industry waste, reducing organic waste, and providing a sustainable approach to developing prebiotic products for use in the food and health industries. Furthermore, this study aligns with sustainable resource utilization and environmentally friendly practices.
กาแฟเป็นหนึ่งในสินค้าทางการเกษตรที่มีการบริโภคและผลิตเป็นจำนวนมากทั่วโลก ส่งผลให้เกิดของเสียจากกระบวนการผลิตอย่าง “กากกาแฟ” ในปริมาณมหาศาล กากกาแฟมักถูกทิ้งเป็นขยะอินทรีย์ ซึ่งอาจส่งผลกระทบต่อสิ่งแวดล้อมโดยตรงและทางอ้อม อย่างไรก็ตาม กากกาแฟมีสารประกอบที่เป็นประโยชน์ เช่น โพลีแซ็กคาไรด์ เส้นใยอาหาร และสารฟีนอลิก ซึ่งสามารถนำมาใช้ประโยชน์ในหลายด้าน เช่น การผลิตปุ๋ยหมัก การสกัดสารต้านอนุมูลอิสระ และการผลิตพลังงานชีวภาพ หนึ่งในแนวทางที่ได้รับความสนใจคือการสกัดพรีไบโอติกจากกากกาแฟ เนื่องจากพรีไบโอติกมีบทบาทสำคัญในการส่งเสริมสุขภาพทางเดินอาหาร โดยช่วยกระตุ้นการเจริญเติบโตของจุลินทรีย์ที่มีประโยชน์ เช่น แลคโตบาซิลลัสและบิฟิโดแบคทีเรีย ซึ่งช่วยเสริมภูมิคุ้มกันและลดความเสี่ยงของโรคต่าง ๆ การนำกากกาแฟมาใช้ในการสกัดพรีไบโอติกจึงเป็นแนวทางที่ไม่เพียงช่วยลดปริมาณขยะและใช้ทรัพยากรอย่างมีประสิทธิภาพ แต่ยังเป็นวิธีที่ยั่งยืนและเป็นมิตรต่อสิ่งแวดล้อม

คณะเทคโนโลยีสารสนเทศ
This report is part of applying the knowledge gained from studying machine learning models and methods for developing a predictive model to identify customers likely to cancel their credit card services with a bank. The project was carried out during an internship at a financial institution, where the creator developed a model to predict customers likely to churn from their credit card services using real customer data through the organization's system. The focus was on building a model that can accurately predict customer churn by selecting features that are appropriate for the prediction model and the unique characteristics of the credit card industry data to ensure the highest possible accuracy and efficiency. This report also covers the integration of the model into the development of a website, which allows related departments to conveniently use the prediction model. Users can upload data for prediction and receive model results instantly. In addition, a dashboard has been created to present insights from the model's predictions, such as identifying high-risk customers likely to cancel services, as well as other important analytical information for strategic decision-making. This will help support more efficient marketing planning and customer retention efforts within the organization.

คณะวิศวกรรมศาสตร์
Nowadays, consumers may have experienced situations where they don't know which product to use based on their skin problems, the product they use doesn't give the desired results, the product is not worth the price, allergic to certain chemicals in the product ,or use multiple products and have ingredients that should not be used together leading to irritation. For this reason, we develop an application to analyze skin care product ingredients to solve such problems. This allows consumers to correctly understand information about the ingredients in products and know which products they should use according to their skin problems without having to rely on chemical knowledge and get products that are the best value for money. The project has integrated software knowledge to develop an application for analyzing skin care product ingredients. To find and recommend suitable skin care products to consumers. The information on various important ingredients has been collected from reliable articles and research.

วิทยาลัยนวัตกรรมการผลิตขั้นสูง
Since organic rice storage silos were faced with an insect problem, an owner solved this problem using the expert system (ES) in the controlled atmosphere process (CAP) under the required standard, fumigating insects with an N2, reducing O2 concentration to less than 2% for 21 days. This article presents the computational fluid dynamics (CFD) assisted ES successfully solved this problem. First, CFD was employed to determine the gas flow pattern, O2 concentration, proper operating conditions, and a correction factor (K) of silos. As expected, CFD results were consistent with the experimental results and theory, assuring the CFD’s credibility. Significantly, CFD results revealed that the ES controlled N2 distribution throughout the silos and effectively reduced O2 concentration to meet the requirement. Next, the ES was developed based on the inference engine assisted by CFD results and the sweep-through purging principle, and it was implemented in the CAP. Last, the experiments evaluated CAP’s efficacy in controlling O2 concentration and insect extermination in the actual silos. The experimental results and owner’s feedback confirmed the excellent efficacy of ES implementation; therefore, the CAP is effective and practical. The novel aspect of this research is a CFD methodology to create the inference engine and the ES.