Spent coffee grounds (SCG) are a byproduct of the coffee brewing process, and their quantity continues to increase due to the growing global coffee consumption. SCG contain beneficial compounds such as polysaccharides, dietary fibers, and antioxidants, which can be utilized in various applications, including prebiotic extraction. This study focuses on extracting prebiotics from SCG using acid hydrolysis and enzymatic hydrolysis methods to evaluate their potential in promoting the growth of beneficial gut microorganisms. The expected results of this research include adding value to coffee industry waste, reducing organic waste, and providing a sustainable approach to developing prebiotic products for use in the food and health industries. Furthermore, this study aligns with sustainable resource utilization and environmentally friendly practices.
กาแฟเป็นหนึ่งในสินค้าทางการเกษตรที่มีการบริโภคและผลิตเป็นจำนวนมากทั่วโลก ส่งผลให้เกิดของเสียจากกระบวนการผลิตอย่าง “กากกาแฟ” ในปริมาณมหาศาล กากกาแฟมักถูกทิ้งเป็นขยะอินทรีย์ ซึ่งอาจส่งผลกระทบต่อสิ่งแวดล้อมโดยตรงและทางอ้อม อย่างไรก็ตาม กากกาแฟมีสารประกอบที่เป็นประโยชน์ เช่น โพลีแซ็กคาไรด์ เส้นใยอาหาร และสารฟีนอลิก ซึ่งสามารถนำมาใช้ประโยชน์ในหลายด้าน เช่น การผลิตปุ๋ยหมัก การสกัดสารต้านอนุมูลอิสระ และการผลิตพลังงานชีวภาพ หนึ่งในแนวทางที่ได้รับความสนใจคือการสกัดพรีไบโอติกจากกากกาแฟ เนื่องจากพรีไบโอติกมีบทบาทสำคัญในการส่งเสริมสุขภาพทางเดินอาหาร โดยช่วยกระตุ้นการเจริญเติบโตของจุลินทรีย์ที่มีประโยชน์ เช่น แลคโตบาซิลลัสและบิฟิโดแบคทีเรีย ซึ่งช่วยเสริมภูมิคุ้มกันและลดความเสี่ยงของโรคต่าง ๆ การนำกากกาแฟมาใช้ในการสกัดพรีไบโอติกจึงเป็นแนวทางที่ไม่เพียงช่วยลดปริมาณขยะและใช้ทรัพยากรอย่างมีประสิทธิภาพ แต่ยังเป็นวิธีที่ยั่งยืนและเป็นมิตรต่อสิ่งแวดล้อม
คณะวิทยาศาสตร์
Otitis Media is an infection of the middle ear that can occur in individuals of all ages. Diagnosis typically involves analyzing images taken with an otoscope by specialized physicians, which relies heavily on medical experience to expedite the process. This research introduces computer vision technology to assist in the preliminary diagnosis, aiding expert decision-making. By utilizing deep learning techniques and convolutional neural networks, specifically the YOLOv8 and Inception v3 architectures, the study aims to classify the disease and its five characteristics used by physicians: color, transparency, fluid, retraction, and perforation. Additionally, image segmentation and classification methods were employed to analyze and predict the types of Otitis Media, which are categorized into four types: Otitis Media with Effusion, Acute Otitis Media with Effusion, Perforation, and Normal. Experimental results indicate that the classification model performs moderately well in directly classifying Otitis Media, with an accuracy of 65.7%, a recall of 65.7%, and a precision of 67.6%. Moreover, the model provides the best results for classifying the perforation characteristic, with an accuracy of 91.8%, a recall of 91.8%, and a precision of 92.1%. In contrast, the classification model that incorporates image segmentation techniques achieved the best overall performance, with an mAP50-95 of 79.63%, a recall of 100%, and a precision of 99.8%. However, this model has not yet been tested for classifying the different types of Otitis Media.
วิทยาลัยเทคโนโลยีและนวัตกรรมวัสดุ
-
คณะสถาปัตยกรรม ศิลปะและการออกแบบ
---