This research aimed to isolate and culture four strains of lactic acid bacteria (LAB) isolated from fermented foods. The antimicrobial activity of the lactic acid bacteria was studied using the agar spot method and the antibiotic resistance properties of the lactic acid bacteria were studied using the agar overlay diffusion method. The results showed that each strain of lactic acid bacteria had different levels of antimicrobial activity and antibiotic resistance, which are safety properties of probiotic microorganisms.
จุลินทรีย์โพรไบโอติก (Probiotic) หมายความว่า จุลินทรีย์ที่มีชีวิต ซึ่งเมื่อร่างกายได้รับในปริมาณที่เพียงพอจะทำให้เกิดผลที่เป็นประโยชน์ต่อสุขภาพ อาหารที่มีการใช้จุลินทรีย์โพรไบโอติกต้องได้รับอนุญาตจากสำนักงานคณะกรรมการ อาหารและยา และ ต้องใช้จุลินทรีย์ตามที่กำหนดไว้ ดังนั้นการวิจัยนี้จึงนำเชื้อแบคทีเรียแลคติกที่แยกได้จากอาหารหมัก 4 สายพันธุ์ มาศึกษาฤทธิ์การต้านเชื้อแบคทีเรียก่อโรคในอาหาร และ ศึกษาสมบัติการดื้อยาของเชื้อแบคทีเรียแลคติก

คณะวิศวกรรมศาสตร์
One of the most important aspects of responding to a medical case is the response time. In general, most fatalities are due to the patient not being able to reach the hands of the doctor in time. This also includes the arrival of medical equipment to the scene. The human brain will start to degrade in function after 3 minutes of oxygen starvation which conventional road transportation method first responders presently use is usually unable to reach the site in this golden 3 minutes, resulting in fatalities during transport or before the arrival of first responders at the scene. Therefore, medical equipment transport by fully autonomous aircraft is explored. This is done through drone deliveries which is much quicker than road methods as the equipment could be flown straight to the site as it is not affected by traffic, road conditions, and navigation. In this project, we will explore an aerial delivery system for medical equipment such as Automatic External Defibrillators (AEDs), First aid equipment, and other small requested medical devices. This will be done through a DJI drone platform and their SDK application. The main goal for this project is to decrease the response time by using an autonomous aerial drone to deliver medical equipment.

คณะวิศวกรรมศาสตร์
The presented project topic is Garbage Sorting Systems. The purpose is to study the operation and develop a waste sorting system that can automatically detect the type of waste using a proximity sensor to separate the types of metal and non-metal waste, as well as an ultrasonic sensor to check the amount of waste in the bin. If the amount of waste exceeds the specified amount, the system will send a notification to the communication device connected to the system, such as a smartphone or computer. The operation of the system is designed to increase the efficiency of waste management, reduce the burden of manual waste sorting, and promote recycling. This system can be applied in various places, such as educational institutions or public places, to help reduce the amount of waste that is not properly separated and increase the opportunity to reuse waste.

คณะวิศวกรรมศาสตร์
This thesis project was conducted to identify the optimal conditions for producing concentrated butterfly pea juice using vacuum evaporation to preserve key compounds in butterfly pea flowers, such as anthocyanins—natural pigments with high antioxidant properties. The study applies a Box-Behnken Design, a statistical method that facilitates analysis of multiple factors. The research focuses on the ratio of dried butterfly pea flowers to water, extraction temperature, and evaporation temperature, each of which has a direct effect on the preservation of key compounds, color, aroma, and flavor. The results indicate that using a dried flower-to-water ratio of 1:15, an extraction temperature of 60°C, and an evaporation temperature of 40°C under low pressure can minimize the loss of essential compounds and best retain the properties of the concentrated butterfly pea juice. Findings from this research provide a foundation for developing an industrial production process for concentrated butterfly pea juice and enhance the potential for creating new products from butterfly pea flowers.