KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

Fabrication of a microfluidic system to simulate skin cell systems for pharmaceutical applications.

Abstract

The development of skin-on-a-chip models plays a crucial role in research for drug and cosmetic development. Traditional approaches often utilize two-dimensional (2D) methods that rely on culturing cells on flat surfaces, resulting in a lack of complexity in skin structure and realistic cell interactions. Moreover, traditional methods have limitations in mimicking fluid flow and nutrient circulation, which affects the accuracy of pharmaceutical testing and the prediction of drug effects. This has led to the advancement of three-dimensional (3D) skin models using new microfluidic technology, enhancing the realism of skin structure by replicating both the epidermis and dermis layers, as well as simulating fluid flow similar to physiological conditions in the human body. The design of 3D systems allows for more realistic cell arrangement and interactions, enabling better simulation of skin functions and increasing the accuracy in evaluating the effects of various substances on cell responses, including absorption, inflammation, and wound healing. Therefore, the development of three-dimensional (3D) skin models not only addresses the limitations of traditional methods but also represents a significant step forward in creating models that can be effectively applied in drug testing and pharmaceutical product development.

Objective

ในปัจจุบัน โรคผิวหนังเป็นปัญหาทางสุขภาพที่พบได้อย่างแพร่หลายทั่วโลก ทั้งโรคผิวหนังอักเสบ โรค สะเก็ดเงิน และมะเร็งผิวหนัง โดยเฉพาะอย่างยิ่งเมื่ออายุของประชากรโลกเพิ่มมากขึ้น ทำให้จำนวนผู้ป่วยโรคผิวหนังที่ต้องได้รับการรักษาเพิ่มขึ้นอย่างต่อเนื่อง ทำให้ตลาดโลกในการนำส่งยาเติบโต ส่งผลให้เกิดความต้องการพัฒนาผลิตภัณฑ์ทางเภสัชกรรมที่สามารถรักษาและบำรุงผิวหนังได้อย่างมีประสิทธิภาพ รวมถึงการพัฒนาระบบการส่งยาเข้าสู่ผิวหนัง (Transdermal Drug Delivery System) ที่สามารถตอบสนองต่อการรักษาโรคเฉพาะทางหรือการใช้ในเครื่องสำอางได้อย่างมีประสิทธิภาพ อย่างไรก็ตาม กระบวนการทดสอบยาและเครื่องสำอางในปัจจุบันยังคงพึ่งพาการทดลองในสัตว์ (Animal Testing) ซึ่งนอกจากจะเป็นที่ถกเถียงในด้านจริยธรรมแล้ว ยังอาจไม่สามารถสะท้อนการตอบสนองที่เกิดขึ้นในร่างกายมนุษย์ได้อย่างแม่นยำ ดังนั้น การพัฒนาระบบที่สามารถจำลองสภาพแวดล้อมของผิวหนังมนุษย์ในห้องปฏิบัติการจึงกลายเป็นที่ต้องการอย่างมาก ซึ่งจะช่วยให้สามารถทดสอบประสิทธิภาพและความปลอดภัยของยาและผลิตภัณฑ์ทางเครื่องสำอางได้โดยไม่ต้องพึ่งพาการทดสอบในสัตว์ โดยระบบไมโครฟลูอิดิก (Microfluidic System) เป็นหนึ่งในเทคโนโลยีที่มีศักยภาพสูงในการจำลอง ระบบเซลล์ผิวหนัง เนื่องจากมีความสามารถในการเลียนแบบสภาพแวดล้อมทางสรีรวิทยาได้อย่างแม่นยำ โดยการควบคุมการไหลของของเหลวในระดับไมโครเมตร ซึ่งช่วยให้สามารถจำลองการทำงานของชั้นต่าง ๆ ของผิวหนังได้อย่างใกล้เคียงกับสภาพแวดล้อมภายในร่างกายจริง นอกจากนี้ยังสามารถใช้ในการศึกษาการแทรก ซึมของสารเข้าสู่ผิวหนัง การปลดปล่อยยา และการโต้ตอบระหว่างเซลล์ผิวหนังกับสารเคมีได้ในระดับที่ ละเอียดและแม่นยำ การสร้างระบบไมโครฟลูอิดิกเพื่อจำลองระบบเซลล์ผิวหนัง จึงมีความสำคัญอย่างยิ่งต่อการพัฒนาทางเภสัชกรรม โดยเฉพาะในการพัฒนายาที่มีการนำส่งผ่านผิวหนัง รวมถึงการพัฒนาผลิตภัณฑ์เครื่องสำอางที่มีประสิทธิภาพและปลอดภัย นอกจากนี้ การสร้างระบบดังกล่าวยังมีศักยภาพในการลดการพึ่งพาการทดสอบในสัตว์ ซึ่งสอดคล้องกับแนวทางการวิจัยและพัฒนาผลิตภัณฑ์ที่เป็นมิตรต่อสิ่งแวดล้อมและมนุษย์ ดังนั้น โครงงานพิเศษนี้จึงได้นำเทคโนโลยีของไหลจุลภาคมาประยุกต์เพื่อสร้างและพัฒนาระบบไมโครฟลูอิดิก โดยทำงานออกแบบและสร้างลวดลายด้วยวิธีการแม่พิมพ์แบบอ่อน (Soft lithography) และใช้ Polydimethylsiloxane (PDMS) เป็นวัสดุที่ทำการเพาะเลี้ยงเซลล์ภายใน ที่สามารถจำลองสภาพแวดล้อมของผิวหนังมนุษย์ได้อย่างมีประสิทธิภาพ รวมถึงการบูรณาการเซลล์ผิวหนังชนิดต่าง ๆ เช่น เคราติโนไซต์ (Keratinocytes) และไฟโบรบลาสต์ (Fibroblasts) เพื่อจะศึกษาการทำงานและการตอบสนองของผิวหนังต่อยาหรือสารเคมี โดยหวังว่างานวิจัยนี้จะช่วยส่งเสริมการพัฒนาผลิตภัณฑ์ทางเภสัชกรรมและเครื่องสำอางในอนาคต

Other Innovations

Designing a portable and sound-confining space

วิทยาลัยวิศวกรรมสังคีต

Designing a portable and sound-confining space

This project studies how to design a portable, sound-confining space that allows users to practice using their voices without disturbing the surroundings.

Read more
A Study of Sound Absorption Material Using Rubber Powder from Old Tires

คณะวิศวกรรมศาสตร์

A Study of Sound Absorption Material Using Rubber Powder from Old Tires

In Thailand, the quantity of old tires has been increasing annually, posing a significant environmental challenge due to their non-biodegradable material. However, old tires contain an internal porous structure, which suggests their potential application as sound-absorbing materials. Porosity is a key characteristic that enables materials to trap sound waves, making them effective for noise reduction. Therefore, this study aims to investigate and develop sound-absorbing materials from old tire rubber powder. The methodology involved mixing old tire powder with fresh latex at a ratio of 1:2, followed by drying at a temperature of 120°C for four hours. Subsequently, the physical properties influencing sound absorption, including density, porosity, and water absorption, were analyzed. The results indicated that the sound-absorbing material produced from old tire rubber powder showed a density of 0.96 g/cm³, a porosity value of 0.45, and a water absorption of 11.03%. Therefore, the findings suggest that old tire rubber powder has the potential to be effectively utilized as a sound-absorbing material.

Read more
Study of the physical properties of plant-based burger from chickpea and red bean

คณะอุตสาหกรรมอาหาร

Study of the physical properties of plant-based burger from chickpea and red bean

In recent years, many people have shown greater interest in plant-based proteins because of their health benefits and lower impact on the environment. This study will look at the physical and chemical properties of chickpeas and red beans. It will also create a plant-based burger that tastes and feels similar to meat-based burgers while providing comparable nutrition. We will steam the ingredients and then analyze important properties such as texture, color, water activity (aW), pH, and how well they retain water and oil. Additionally, we will conduct a sensory evaluation to understand consumer preferences.

Read more