KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

PRIVARY

PRIVARY

Abstract

The "PRIVARY" product is an innovative herbal jelly beverage designed to support weight management and promote health through the benefits of four Thai herbs: roselle, safflower, chrysanthemum, and bitter melon. These herbs are rich in active compounds such as flavonoids, beta-carotene, and anthocyanins, which help reduce blood lipids, prevent inflammation, and exhibit antioxidant properties. The product emphasizes convenience and caters to health-conscious consumers using advanced production techniques like Inverse and External Gelation to create spheres encapsulating key bioactive compounds. Additionally, the product aligns with sustainability goals by enhancing the value of Thai herbs and supporting local communities.

Objective

ปัจจุบันการควบคุมน้ำหนักและสุขภาพเป็นเรื่องที่สำคัญสำหรับหลายคนแต่บ่อยครั้งที่การเลือกกินของหวานหรือขนมทำให้เรารู้สึกว่ากำลังละเมิดแผนควบคุมน้ำหนักของเราและกลัวว่าจะอ้วนหรือมีปัญหาสุขภาพตามมา เพื่อตอบโจทย์นี้ เราจึงได้แรงบันดาลใจในการพัฒนาเครื่องดื่มสมุนไพรในรูปแบบเยลลี่ที่ไม่เพียงแต่มีสรรพคุณในการช่วยควบคุมน้ำหนักและลดความอ้วน แต่ยังช่วยทำให้ร่างกายมีสุขภาพดีขึ้นด้วย โดยไม่ต้องพึ่งผลิตภัณฑ์เสริมหรือยาลดน้ำหนักที่อาจมีผลข้างเคียงที่เป็นอันตราย โดยผลิตภัณฑ์ของเราจะไม่เป็นเพียงแค่เครื่องดื่มสมุนไพรธรรมดา แต่จะถูกพัฒนาให้อยู่ในรูปแบบเครื่องดื่มเยลลี่ที่มีเม็ดสเฟียร์เป็นองค์ประกอบในเครื่องดื่มเพื่อสร้างความเพลิดเพลินในการรับประทาน และสามารถทานได้ง่ายเหมือนกินขนมที่ชื่นชอบ

Other Innovations

burden - Take me to dream

คณะสถาปัตยกรรม ศิลปะและการออกแบบ

burden - Take me to dream

On the path of life since we were born, we have encountered many things in life, differences and various characteristics. However, each factor of each person's life has different responsibilities, dreams, and life context differences. Everyone still has to struggle against obstacles and many burdens in life, shouldering the responsibilities of themselves and their families in order to survive. Living in different ways, with many burdens and dreams, but in real life, how many people can shoulder these burdens to reach their dreams?

Read more
Air Quality Index Prediction Using Ensemble Machine Learning Methods

คณะวิทยาศาสตร์

Air Quality Index Prediction Using Ensemble Machine Learning Methods

This special problem aims to study and compare the performance of predicting the air quality index (AQI) using five ensemble machine learning methods: random forest, XGBoost, CatBoost, stacking ensemble of random forest and XGBoost, and stacking ensemble of random forest, SVR, and MLP. The study uses a dataset from the Central Pollution Control Board of India (CPCB), which includes fifteen pollutants and nine meteorological variables collected between January, 2021 and December, 2023. In this study, there were 1,024,920 records. The performance is measured using three methods: root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination. The study found that the random forest and XGBoost stacking ensemble had the best performance measures among the three methods, with the minimum RMSE of 0.1040, the minimum MAE of 0.0675, and the maximum of 0.8128. SHAP-based model interpretation method for five machine learning methods. All methods reached the same conclusion: the two variables that most significantly impacted the global prediction were PM2.5 and PM10, respectively.

Read more
The impact of climate change on the yield of Bambara groundnut in Thailand using the DSSAT model

คณะเทคโนโลยีการเกษตร

The impact of climate change on the yield of Bambara groundnut in Thailand using the DSSAT model

Climate change affects agricultural systems worldwide, including Thailand, and may lead to reduced crop yields, impacting food security. Bambara groundnut is a crop with the potential to adapt to changing environments and can thrive in areas with limited resources. This research aims to study the impact of climate change on Bambara groundnut yields in Thailand using the DSSAT (Decision Support System for Agrotechnology Transfer) model, an important tool for predicting plant growth under various environmental conditions. This study utilizes climate data, soil composition, and genetic information of Bambara groundnut to simulate and analyze yield trends under future climate scenarios. Four study areas in Thailand were selected: Songkhla, Lampang, Yasothon, and Saraburi. The CSM-CROPGRO-Bambara groundnut model was used to assess the impact of changing temperature and rainfall on the growth and yield of Bambara groundnut. The results of this study are expected to provide farmers and researchers with valuable information for planning cultivation and managing peanut production in response to climate change. Additionally, the findings can help formulate policy guidelines to promote the cultivation of climate-resilient crops and support the country's food security.

Read more