SecurionSphere is the penetration testing learning platform that focuses on web application exploitation. This platform is intended to address concerns seen in existing penetration testing platforms, such as resource sharing that may affect other users and the constant environment configuration the permits the same response leading to copy the answer from others. Supervisors can use templates to address various forms of web application vulnerability threats. Users can generate the instance of supervisor's templates machine. The platform also randomly generates the environment configuration for each machine has the difference environment and the answer. This allows the users get more realistic learning experiences without affecting the resources of others.
แพลตฟอร์มสำหรับการทดสอบเจาะระบบ (Cybersecurity Playground) คือ ระบบหรือสภาพแวดล้อมที่ถูกสร้างขึ้นมาโดยมีวัตถุประสงค์เพื่อให้ผู้ที่ต้องการศึกษาทางด้านความมั่นคงปลอดภัยทางไซเบอร์ (cybersecurity) ได้ทดลองเจาะระบบด้วยการลงมือปฏิบัติจริง ค้นหาช่องโหว่เอง และเจาะระบบด้วยตัวเอง เพื่อให้ได้ประสบการณ์ที่ใกล้เคียงกับชีวิตจริง ตัวอย่าง แพลตฟอร์มสำหรับการทดสอบเจาะระบบ เช่น hackthebox.com, tryhackme.com, portswigger.com ฯลฯ ที่เราสามารถเข้าไปทดลองทำได้ด้วยตัวเอง แต่ปัญหาที่สังเกตได้แพลตฟอร์มเหล่านี้คือ โจทย์หรือแบบทดสอบบางข้อมีการสร้างสภาพแวดล้อม (Environment) ขึ้นมาเอง ซึ่งอาจส่งผลให้ต้องมีการแบ่งปันทรัพยากรและกระทบกับบุคคลอื่นที่กำลังทำโจทย์นั้นๆอยู่ นอกจากนี้การที่ใช้สภาพแวดล้อมแบบเดียวกัน ทำให้ผู้ใช้งานที่เข้ามาทำโจทย์ได้โจทย์แบบเดียวกัน รูปแบบเดียวกันเสมอ ทำให้สามารถคัดลอกคำตอบจากผู้ที่ทำเสร็จแล้วมาตอบได้ แต่ถ้าหากเราต้องการสร้างโจทย์ขึ้นมาเองการสร้างโจทย์และการเตรียมสภาพแวดล้อมก็เป็นสิ่งที่มีความยุ่งยากและซับซ้อน ทำให้บ่อยครั้งที่การสร้างโจทย์ขึ้นมาเองเพื่อใช้ในการศึกษาการทดสอบเจาะระบบ มีช่องโหว่อื่นๆที่อยู่นอกเหนือจากช่องโหว่ที่เราตั้งใจให้มี ซึ่งไม่ตรงกับวัตถุประสงค์ของโจทย์ที่สร้างขึ้นมา จากปัญหาดังกล่าว ทางผู้จัดทำจึงมีความประสงค์ที่จะสร้างโครงงานที่เป็นเว็บแอปพลิเคชันขึ้นมาชื่อว่า Penetration Testing Learning Platform (SecurionSphere) เพื่อเป็นแพลตฟอร์มสำหรับศึกษาและทดลองเจาะระบบที่มีการเตรียมเทมเพลตสำหรับโจทย์รูปแบบต่างๆเอาไว้แล้ว และผู้ที่ต้องการจะสร้างโจทย์สามารถเลือกใช้เทมเพลตที่แพลตฟอร์มเตรียมไว้ให้ในการสร้างโจทย์ได้อย่างสะดวกสบาย ปลอดภัย ไม่ไปกระทบกับทรัพยากรของบุคคลอื่น และมีการสุ่มสภาพแวดล้อม (Environment) ทำให้โจทย์มีสภาพแวดล้อมที่แตกต่างกัน และคำตอบของโจทย์ไม่เหมือนกัน โดยแพลตฟอร์มนี้จะเน้นไปที่การศึกษาการโจมตีช่องโหว่ต่าง ๆ บนเว็บแอปพลิเคชัน (Web Exploitation) เท่านั้น

คณะวิศวกรรมศาสตร์
This cooperative education project aims to enhance the efficiency of Hydrogen Manufacturing Unit 2 (HMU-2) and Pressure Swing Adsorption 3 (PSA-3) by using AVEVA Pro/II process modeling and a Machine Learning model for process simulation. The study found that the AVEVA Pro/II model predicted outcomes with deviations ranging from 0–35%, including a hydrogen flow rate deviation from the PSA unit of 12%, exceeding the company’s acceptable limit of 10%. To address this, a Machine Learning model based on the Random Forest algorithm was developed with hyperparameter tuning. The Machine Learning model demonstrated high accuracy, achieving Mean Squared Errors (MSE) of 8.48 and 0.18 for process and laboratory data, respectively, and R-squared values of 0.98 and 0.88 for the same datasets. It outperformed the AVEVA Pro/II model in predicting all variables and reduced the hydrogen flow rate deviation to 4.75% and 1.35% for production rates of 180 and 220 tons per day, respectively. Optimization using the model provided recommendations for process adjustments, increasing hydrogen production by 7.8 tons per day and generating an additional annual profit of 850,966.23 Baht.

วิทยาเขตชุมพรเขตรอุดมศักดิ์
This project aims to design and develop a propulsion system for agricultural equipment using RFID technology and evaluate its movement performance on different surfaces, including concrete and grass. The experiment focuses on examining the tag detection range under transmission power levels of 20 dBm, 23 dBm, and 26 dBm, as well as the impact of antenna angles on detection efficiency. Additionally, the system was tested in three movement scenarios: straight path, left turn, and right turn, at distances of 2 meters, 4 meters, and 6 meters. The results indicate that the system achieved the highest average speed of 0.4736 m/s and an average turning angle of 91.6° when moving in a straight path on a concrete surface at a distance of 4 meters. On a grass surface at the same distance, the average speed was 0.4483 m/s, with an average turning angle of 91.1°. For left and right turns, the movement on the concrete surface generally exhibited a higher average speed than on grass, particularly at a distance of 4 meters, where differences in turning angles were observed. This study provides insights into the factors affecting the movement of agricultural mowing equipment and serves as a foundation for enhancing the efficiency of propulsion systems in future developments.

วิทยาลัยการจัดการนวัตกรรมและอุตสาหกรรม
Air Rack is a product designed to address businesses with limited space and budget constraints for server rooms, cooling systems, and noise management. This system enables efficient use of IT equipment in open spaces, supporting both On-premise and On-cloud operations. It converts sensor data into digital information and displays it via a Dashboard, allowing users to monitor, analyze, and control the system remotely. Additionally, Air Rack significantly reduces power consumption and the costs associated with traditional server room management.