KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

Penetration Testing Learning Platform (SecurionSphere)

Abstract

SecurionSphere is the penetration testing learning platform that focuses on web application exploitation. This platform is intended to address concerns seen in existing penetration testing platforms, such as resource sharing that may affect other users and the constant environment configuration the permits the same response leading to copy the answer from others. Supervisors can use templates to address various forms of web application vulnerability threats. Users can generate the instance of supervisor's templates machine. The platform also randomly generates the environment configuration for each machine has the difference environment and the answer. This allows the users get more realistic learning experiences without affecting the resources of others.

Objective

แพลตฟอร์มสำหรับการทดสอบเจาะระบบ (Cybersecurity Playground) คือ ระบบหรือสภาพแวดล้อมที่ถูกสร้างขึ้นมาโดยมีวัตถุประสงค์เพื่อให้ผู้ที่ต้องการศึกษาทางด้านความมั่นคงปลอดภัยทางไซเบอร์ (cybersecurity) ได้ทดลองเจาะระบบด้วยการลงมือปฏิบัติจริง ค้นหาช่องโหว่เอง และเจาะระบบด้วยตัวเอง เพื่อให้ได้ประสบการณ์ที่ใกล้เคียงกับชีวิตจริง ตัวอย่าง แพลตฟอร์มสำหรับการทดสอบเจาะระบบ เช่น hackthebox.com, tryhackme.com, portswigger.com ฯลฯ ที่เราสามารถเข้าไปทดลองทำได้ด้วยตัวเอง แต่ปัญหาที่สังเกตได้แพลตฟอร์มเหล่านี้คือ โจทย์หรือแบบทดสอบบางข้อมีการสร้างสภาพแวดล้อม (Environment) ขึ้นมาเอง ซึ่งอาจส่งผลให้ต้องมีการแบ่งปันทรัพยากรและกระทบกับบุคคลอื่นที่กำลังทำโจทย์นั้นๆอยู่ นอกจากนี้การที่ใช้สภาพแวดล้อมแบบเดียวกัน ทำให้ผู้ใช้งานที่เข้ามาทำโจทย์ได้โจทย์แบบเดียวกัน รูปแบบเดียวกันเสมอ ทำให้สามารถคัดลอกคำตอบจากผู้ที่ทำเสร็จแล้วมาตอบได้ แต่ถ้าหากเราต้องการสร้างโจทย์ขึ้นมาเองการสร้างโจทย์และการเตรียมสภาพแวดล้อมก็เป็นสิ่งที่มีความยุ่งยากและซับซ้อน ทำให้บ่อยครั้งที่การสร้างโจทย์ขึ้นมาเองเพื่อใช้ในการศึกษาการทดสอบเจาะระบบ มีช่องโหว่อื่นๆที่อยู่นอกเหนือจากช่องโหว่ที่เราตั้งใจให้มี ซึ่งไม่ตรงกับวัตถุประสงค์ของโจทย์ที่สร้างขึ้นมา จากปัญหาดังกล่าว ทางผู้จัดทำจึงมีความประสงค์ที่จะสร้างโครงงานที่เป็นเว็บแอปพลิเคชันขึ้นมาชื่อว่า Penetration Testing Learning Platform (SecurionSphere) เพื่อเป็นแพลตฟอร์มสำหรับศึกษาและทดลองเจาะระบบที่มีการเตรียมเทมเพลตสำหรับโจทย์รูปแบบต่างๆเอาไว้แล้ว และผู้ที่ต้องการจะสร้างโจทย์สามารถเลือกใช้เทมเพลตที่แพลตฟอร์มเตรียมไว้ให้ในการสร้างโจทย์ได้อย่างสะดวกสบาย ปลอดภัย ไม่ไปกระทบกับทรัพยากรของบุคคลอื่น และมีการสุ่มสภาพแวดล้อม (Environment) ทำให้โจทย์มีสภาพแวดล้อมที่แตกต่างกัน และคำตอบของโจทย์ไม่เหมือนกัน โดยแพลตฟอร์มนี้จะเน้นไปที่การศึกษาการโจมตีช่องโหว่ต่าง ๆ บนเว็บแอปพลิเคชัน (Web Exploitation) เท่านั้น

Other Innovations

“THE VEIL” Community Mall and Agricultural Hub

คณะสถาปัตยกรรม ศิลปะและการออกแบบ

“THE VEIL” Community Mall and Agricultural Hub

A mixed-used complex consisting of commercial spaces, agricultural informative center, workshop, vertical farming and home office.

Read more
Automatic License Plate Recognition Service

คณะวิศวกรรมศาสตร์

Automatic License Plate Recognition Service

This project focuses on the development of an automatic license plate recognition system that supports both standard and special license plates in Thailand. By utilizing Machine Learning technology, the system enhances the efficiency of license plate reading. It can process data from both images and videos. Users can register and subscribe to the service, allowing them to send data for processing through RESTful API, WebSocket, and registered IP cameras.

Read more
A Comparison of The Performance of Machine Learning Methods on Time Series Data Using Lagged Time Intervals

คณะวิทยาศาสตร์

A Comparison of The Performance of Machine Learning Methods on Time Series Data Using Lagged Time Intervals

This special problem aims to compare the performance of machine learning methods in time series forecasting using lagged time periods as independent variables. The lagged periods are categorized into three groups: lagged by 10 units, lagged by 15 units, and lagged by 20 units. The study employs four machine learning methods: Decision Tree (DT), Random Forest (RF), K-Nearest Neighbors (KNN), and Support Vector Machine (SVM). The time series data simulated as independent variables diverse including characteristics: Random Walk data, Trending data, and Non-Linear data, with sample sizes of 100, 300, 500, and 700. The research methodology involves splitting the data into 90% for training and 10% for testing. Simulations and analysis are performed using the R programming language, with 1,000 iterations conducted. The results are evaluated based on the average mean squared error (AMSE) and the average mean absolute percentage error (AMAPE) are calculated to identify the best performing method. The research findings revealed that for Random Walk data, the best performing methods are Random Forest and Support Vector Machine. For Trend data, the best performing methods are Random Forest. For Non-Linear data, the best performing methods are Support Vector Machine. When tested with real-world data, the results show that for the Euro-to-Thai Baht exchange rate, the best methods are Random Forest and Support Vector Machine. For the S&P 500 Index in USD, the best performing methods are Random Forest. For the Bank of America Corp Index in USD, the best performing methods are Support Vector Machine.

Read more