SecurionSphere is the penetration testing learning platform that focuses on web application exploitation. This platform is intended to address concerns seen in existing penetration testing platforms, such as resource sharing that may affect other users and the constant environment configuration the permits the same response leading to copy the answer from others. Supervisors can use templates to address various forms of web application vulnerability threats. Users can generate the instance of supervisor's templates machine. The platform also randomly generates the environment configuration for each machine has the difference environment and the answer. This allows the users get more realistic learning experiences without affecting the resources of others.
แพลตฟอร์มสำหรับการทดสอบเจาะระบบ (Cybersecurity Playground) คือ ระบบหรือสภาพแวดล้อมที่ถูกสร้างขึ้นมาโดยมีวัตถุประสงค์เพื่อให้ผู้ที่ต้องการศึกษาทางด้านความมั่นคงปลอดภัยทางไซเบอร์ (cybersecurity) ได้ทดลองเจาะระบบด้วยการลงมือปฏิบัติจริง ค้นหาช่องโหว่เอง และเจาะระบบด้วยตัวเอง เพื่อให้ได้ประสบการณ์ที่ใกล้เคียงกับชีวิตจริง ตัวอย่าง แพลตฟอร์มสำหรับการทดสอบเจาะระบบ เช่น hackthebox.com, tryhackme.com, portswigger.com ฯลฯ ที่เราสามารถเข้าไปทดลองทำได้ด้วยตัวเอง แต่ปัญหาที่สังเกตได้แพลตฟอร์มเหล่านี้คือ โจทย์หรือแบบทดสอบบางข้อมีการสร้างสภาพแวดล้อม (Environment) ขึ้นมาเอง ซึ่งอาจส่งผลให้ต้องมีการแบ่งปันทรัพยากรและกระทบกับบุคคลอื่นที่กำลังทำโจทย์นั้นๆอยู่ นอกจากนี้การที่ใช้สภาพแวดล้อมแบบเดียวกัน ทำให้ผู้ใช้งานที่เข้ามาทำโจทย์ได้โจทย์แบบเดียวกัน รูปแบบเดียวกันเสมอ ทำให้สามารถคัดลอกคำตอบจากผู้ที่ทำเสร็จแล้วมาตอบได้ แต่ถ้าหากเราต้องการสร้างโจทย์ขึ้นมาเองการสร้างโจทย์และการเตรียมสภาพแวดล้อมก็เป็นสิ่งที่มีความยุ่งยากและซับซ้อน ทำให้บ่อยครั้งที่การสร้างโจทย์ขึ้นมาเองเพื่อใช้ในการศึกษาการทดสอบเจาะระบบ มีช่องโหว่อื่นๆที่อยู่นอกเหนือจากช่องโหว่ที่เราตั้งใจให้มี ซึ่งไม่ตรงกับวัตถุประสงค์ของโจทย์ที่สร้างขึ้นมา จากปัญหาดังกล่าว ทางผู้จัดทำจึงมีความประสงค์ที่จะสร้างโครงงานที่เป็นเว็บแอปพลิเคชันขึ้นมาชื่อว่า Penetration Testing Learning Platform (SecurionSphere) เพื่อเป็นแพลตฟอร์มสำหรับศึกษาและทดลองเจาะระบบที่มีการเตรียมเทมเพลตสำหรับโจทย์รูปแบบต่างๆเอาไว้แล้ว และผู้ที่ต้องการจะสร้างโจทย์สามารถเลือกใช้เทมเพลตที่แพลตฟอร์มเตรียมไว้ให้ในการสร้างโจทย์ได้อย่างสะดวกสบาย ปลอดภัย ไม่ไปกระทบกับทรัพยากรของบุคคลอื่น และมีการสุ่มสภาพแวดล้อม (Environment) ทำให้โจทย์มีสภาพแวดล้อมที่แตกต่างกัน และคำตอบของโจทย์ไม่เหมือนกัน โดยแพลตฟอร์มนี้จะเน้นไปที่การศึกษาการโจมตีช่องโหว่ต่าง ๆ บนเว็บแอปพลิเคชัน (Web Exploitation) เท่านั้น

คณะวิศวกรรมศาสตร์
The integration of intelligent robotic systems into human-centric environments, such as laboratories, hospitals, and educational institutions, has become increasingly important due to the growing demand for accessible and context-aware assistants. However, current solutions often lack scalability—for instance, relying on specialized personnel to repeatedly answer the same questions as administrators for specific departments—and adaptability to dynamic environments that require real-time situational responses. This study introduces a novel framework for an interactive robotic assistant (Beckerle et al. , 2017) designed to assist during laboratory tours and mitigate the challenges posed by limited human resources in providing comprehensive information to visitors. The proposed system operates through multiple modes, including standby mode and recognition mode, to ensure seamless interaction and adaptability in various contexts. In standby mode, the robot signals readiness with a smiling face animation while patrolling predefined paths or conserving energy when stationary. Advanced obstacle detection ensures safe navigation in dynamic environments. Recognition mode activates through gestures or wake words, using advanced computer vision and real-time speech recognition to identify users. Facial recognition further classifies individuals as known or unknown, providing personalized greetings or context-specific guidance to enhance user engagement. The proposed robot and its 3D design are shown in Figure 1. In interactive mode, the system integrates advanced technologies, including advanced speech recognition (ASR Whisper), natural language processing (NLP), and a large language model Ollama 3.2 (LLM Predictor, 2025), to provide a user-friendly, context-aware, and adaptable experience. Motivated by the need to engage students and promote interest in the RAI department, which receives over 1,000 visitors annually, it addresses accessibility gaps where human staff may be unavailable. With wake word detection, face and gesture recognition, and LiDAR-based obstacle detection, the robot ensures seamless communication in English, alongside safe and efficient navigation. The Retrieval-Augmented Generation (RAG) human interaction system communicates with the mobile robot, built on ROS1 Noetic, using the MQTT protocol over Ethernet. It publishes navigation goals to the move_base module in ROS, which autonomously handles navigation and obstacle avoidance. A diagram is explained in Figure 2. The framework includes a robust back-end architecture utilizing a combination of MongoDB for information storage and retrieval and a RAG mechanism (Thüs et al., 2024) to process program curriculum information in the form of PDFs. This ensures that the robot provides accurate and contextually relevant answers to user queries. Furthermore, the inclusion of smiling face animations and text-to-speech (TTS BotNoi) enhanced user engagement metrics were derived through a combination of observational studies and surveys, which highlighted significant improvements in user satisfaction and accessibility. This paper also discusses capability to operate in dynamic environments and human-centric spaces. For example, handling interruptions while navigating during a mission. The modular design allows for easy integration of additional features, such as gesture recognition and hardware upgrades, ensuring long-term scalability. However, limitations such as the need for high initial setup costs and dependency on specific hardware configurations are acknowledged. Future work will focus on enhancing the system’s adaptability to diverse languages, expanding its use cases, and exploring collaborative interactions between multiple robots. In conclusion, the proposed interactive robotic assistant represents a significant step forward in bridging the gap between human needs and technological advancements. By combining cutting-edge AI technologies with practical hardware solutions, this work offers a scalable, efficient, and user-friendly system that enhances accessibility and user engagement in human-centric spaces.

วิทยาเขตชุมพรเขตรอุดมศักดิ์
This project aims to design and develop an eye-tracking system to facilitate communication for paralyzed immobile patients. The system is designed to enable patients to convey their needs to caregivers or family members by detecting and tracking eye movements using the Tobii Eye Tracker 5 device. This approach serves as an alternative communication method, replacing the physical movement or speech of paralyzed patients. The system effectively detects and tracks eye movements at a distance of 55 to 85 centimeters and is designed for installation on a computer to ensure ease of use. The program interface consists of three main sections: (1) a set of emotions, (2) a set of needs, and (3) a set of additional needs. It supports input from a virtual keyboard in both Thai and English and allows users to specify additional needs through eye-tracking-enabled typing. Furthermore, the system can generate synthetic speech for text that is difficult to pronounce aloud, send notification messages via the Line application, and store usage data in a database presented in a dashboard format. System testing revealed that the optimal detection distance ranges from 65 to 75 centimeters, as this range yields an error rate of no more than 1 percent. The system accurately responds to eye movements for communication through sound within 3 seconds when interacting with various function buttons. This eye-tracking system effectively enables paralyzed immobile patients to communicate their emotions and needs, facilitating better understanding and interaction between patients and their caregivers or family members.

คณะอุตสาหกรรมอาหาร
Tepache is a traditional Mexican fermented beverage commonly made using pineapple peels, which naturally contain sugars and the enzyme bromelain. These components contribute to its distinctive aroma and unique flavor. This project aims to develop a health-enhancing tepache by fermenting pineapple peels with probiotic yeast and lactic acid bacteria. Additionally, prebiotics, including inulin and xylo-oligosaccharides, are incorporated as nutrients to support probiotic growth. The resulting synbiotic tepache promotes gut microbiota balance, exhibits antioxidant properties, and enhances the immune system, making it a functional and beneficial beverage for consumers.