The offline evaluation system for Thai-language large language models (LLMs) is designed to enable experts to efficiently test and assess various LLMs without relying on external services. This enhances the flexibility in selecting LLMs that best suit organizational needs or expert systems (ES). The system operates on personal computers, ensuring data security by eliminating concerns about external data storage. Additionally, it supports model testing and development using Retrieval-Augmented Generation (RAG), allowing access to domain-specific knowledge for accurate, energy-efficient processing. This ensures that the models can perform optimally and effectively meet the demands of organizations and expert systems.
ในปัจจุบัน โมเดลภาษาขนาดใหญ่ (Large Language Models: LLMs) ได้รับความนิยมและถูกนำไปใช้งานในหลากหลายด้าน ทั้งในองค์กรและภาคอุตสาหกรรม โดยเฉพาะในการพัฒนาระบบผู้เชี่ยวชาญ (Expert System: ES) ที่ช่วยให้ผู้ใช้สามารถทำงานได้อย่างมีประสิทธิภาพสูงขึ้น ไม่ว่าจะเป็นการวิเคราะห์ข้อมูล การให้คำแนะนำ หรือการประมวลผลข้อมูลเฉพาะทางในแต่ละสาขา อย่างไรก็ตาม การใช้โมเดลภาษาขนาดใหญ่จากภายนอกอาจมีข้อจำกัดด้านความปลอดภัยของข้อมูล และบางองค์กรจำเป็นต้องประมวลผลภายในระบบของตนเองเพื่อลดความเสี่ยงจากการเชื่อมต่อภายนอก ดังนั้น การพัฒนาระบบทดสอบโมเดลภาษาขนาดใหญ่แบบออฟไลน์ในภาษาไทยจึงมีความสำคัญ ทั้งในแง่ของการรักษาความปลอดภัยข้อมูล ลดการพึ่งพาบริการจากภายนอก และเพิ่มความยืดหยุ่นในการเลือกใช้โมเดลที่เหมาะสมกับงานเฉพาะด้าน อย่างไรก็ตาม การทดสอบและประเมินประสิทธิภาพของ LLMs ในสภาพแวดล้อมแบบออฟไลน์ถือเป็นความท้าทาย เนื่องจากต้องคำนึงถึงปัจจัยต่าง ๆ เช่น ความแม่นยำของโมเดล ทรัพยากรที่ใช้ในการประมวลผล และความสามารถในการรองรับภาษาไทยได้อย่างมีประสิทธิภาพ

คณะวิศวกรรมศาสตร์
This research aims to investigate the adulteration of Khao Dawk Mali 105 rice based on storage age using Near-Infrared Spectroscopy (NIRS) with Fourier Transform Near-Infrared Spectroscopy (FT-NIR) in the wavenumber range of 12,500 – 4,000 cm-1 (800 – 2,500 nm). Storage duration significantly impacts the quality of cooked rice. This research is divided into two parts: 1) to investigate the feasibility of separating rice according to storage age (1, 2, and 3 years) using the best model created by an Ensemble method combined with Second Derivative, which achieved an accuracy of 96.3%. 2) To investigate adulteration based on storage age by adulterating at 0% (all 2- and 3-year-old rice), 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100% (all 1-year-old rice). The best model was created using Gaussian Process Regression (GPR) combined with Smoothing + Multiplicative Scatter Correction (MSC), with coefficients of determination (r²), root mean square error of prediction (RMSEP), bias, and prediction ability (RPD) values of 0.92, 8.6%, 0.9%, and 3.6 respectively. This demonstrates that the adulteration model can be applied to separate rice by storage age (1, 2, and 3 years). Additionally, the color values of rice with different storage ages show differences in L* and b* values.

คณะวิศวกรรมศาสตร์
The Diabetes Meal Management Application is a digital health tool designed to empower Type 2 diabetic patients in managing their diet and blood sugar levels more effectively. With features like personalized meal recommendations, nutrient tracking, and seamless integration with wearable blood glucose monitors via Blood sugar measuring device (CGM), the application enables users to monitor glucose fluctuations in real time and adjust dietary choices accordingly. Built with the Flutter framework and supported by a backend of Express.js and MongoDB, the application prioritizes a user-friendly interface, ensuring easy navigation and encouraging consistent engagement with meal planning and health tracking. Preliminary user trials show that the application contributes to more stable blood sugar levels and improved adherence to dietary recommendations, helping users reduce health risks associated with diabetes complications. By offering a proactive approach to diabetes management, the application reduces the need for frequent clinical interventions, thus potentially lowering medical costs over time. This project highlights the promising role of digital health solutions in supporting personalized diabetes care, emphasizing the potential for scalable, user-centered interventions that foster long-term health improvements for diabetic patients.

คณะบริหารธุรกิจ
Parking space shortages in urban areas contribute to traffic congestion, inefficient land use, and environmental challenges. Automated Parking Systems (APS) provide an innovative solution by optimizing space utilization, reducing search times, and minimizing carbon emissions. This research investigates key factors influencing user adoption of APS technology using the UTAUT2 framework, focusing on variables such as Performance Expectancy, Effort Expectancy, Social Influence, Trust in Technology, and Environmental Consciousness. The APS Evolution project presents a smart parking solution that enhances efficiency, minimizes environmental impact, and improves user experience in urban settings. The initiative emphasizes technology-driven urban mobility and sustainable parking management to align with the evolving needs of modern cities.