KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

Niyom Thai

Niyom Thai

Abstract

"Niyom Thai" represents health-centric footwear adorned with traditional Thai patterns, embodying an innovative approach to sustainable development tailored to the current needs of local communities. These shoes utilize natural materials to mitigate fatigue and integrate safety technologies, including location tracking via a mobile application and heart rate monitoring. This addresses the aspects of convenience and well-being in both daily life and travel

Objective

เนื่องจากปัจจัยผู้คนให้ความสนใจเรื่องสุขภาพมากขึ้นเเละรองเท้านับเป็นอีกหนึ่งเทรนด์สุขภาพที่กำลังได้รับความสนใจในยุคนี้ อีกทั้งผ้าไทยจัดเป็นศิลปะ ที่มีเอกลักษณ์เเละความสวยงาม คณะผู้จัดทำจึงมีเเนวคิดที่จะออกแบบลวดลายไทยให้เข้ากับยุคสมัยเเต่ยังคงความเป็นเป็นไทยและนำเทคโนโลยีมาผสมผสานเข้าด้วยกันให้เกิดนวัตกรรมรองเท้าเพื่อสุขภาพลายไทย

Other Innovations

Industrial robotic arm and pneumatic control systems

คณะวิศวกรรมศาสตร์

Industrial robotic arm and pneumatic control systems

This Project has been undertaken to address the need for skill development and knowledge enhancement in pneumatic systems and automation control, which are crucial in today’s manufacturing industry. Pneumatic systems play a vital role in various production processes, including machine control, automated devices, and assembly lines. However, the Department of Measurement and Control Engineering currently lacks a laboratory dedicated to the study and experimentation of pneumatic systems due to the deterioration and lack of maintenance of the previously used equipment. This has resulted in students missing the opportunity to practice essential skills required in the industrial sector. The authors of this thesis recognize the necessity of reviving and developing a pneumatic laboratory that can effectively support teaching, learning, and research activities. This project focuses on studying and developing industrial robotic arm control systems and pneumatic systems, integrating modern technologies such as Programmable Logic Controllers (PLC) and AI Vision. These systems are intended to be applicable to real-world industrial contexts. The outcomes of this project are expected to not only enhance the understanding of relevant technologies but also aim to transform the laboratory into a vital learning hub for current and future students. Furthermore, this initiative seeks to improve the competitiveness of students in the job market and support the development of innovations in the manufacturing industry in the years to come.

Read more
EV conversion for a pick-up truck taxi

คณะวิศวกรรมศาสตร์

EV conversion for a pick-up truck taxi

ยานยนต์ไฟฟ้าดัดแปลง

Read more
Detection of Durian Leaf Diseases Using Image Analysis and Artificial Intelligence

คณะเทคโนโลยีการเกษตร

Detection of Durian Leaf Diseases Using Image Analysis and Artificial Intelligence

Durian is a crucial economic crop of Thailand and one of the most exported agricultural products in the world. However, producing high-quality durian requires maintaining the health of durian trees, ensuring they remain strong and disease-free to optimize productivity and minimize potential damage to both the tree and its fruit. Among the various diseases affecting durian, foliar diseases are among the most common and rapidly spreading, directly impacting tree growth and fruit quality. Therefore, monitoring and controlling leaf diseases is essential for preserving durian quality. This study aims to apply image analysis technology combined with artificial intelligence (AI) to classify diseases in durian leaves, enabling farmers to diagnose diseases independently without relying on experts. The classification includes three categories: healthy leaves (H), leaves infected with anthracnose (A), and leaves affected by algal spot (S). To develop the classification model, convolutional neural network (CNN) algorithms—ResNet-50, GoogleNet, and AlexNet—were employed. Experimental results indicate that the classification accuracy of ResNet-50, GoogleNet, and AlexNet is 93.57%, 93.95%, and 68.69%, respectively.

Read more