
"Niyom Thai" represents health-centric footwear adorned with traditional Thai patterns, embodying an innovative approach to sustainable development tailored to the current needs of local communities. These shoes utilize natural materials to mitigate fatigue and integrate safety technologies, including location tracking via a mobile application and heart rate monitoring. This addresses the aspects of convenience and well-being in both daily life and travel
เนื่องจากปัจจัยผู้คนให้ความสนใจเรื่องสุขภาพมากขึ้นเเละรองเท้านับเป็นอีกหนึ่งเทรนด์สุขภาพที่กำลังได้รับความสนใจในยุคนี้ อีกทั้งผ้าไทยจัดเป็นศิลปะ ที่มีเอกลักษณ์เเละความสวยงาม คณะผู้จัดทำจึงมีเเนวคิดที่จะออกแบบลวดลายไทยให้เข้ากับยุคสมัยเเต่ยังคงความเป็นเป็นไทยและนำเทคโนโลยีมาผสมผสานเข้าด้วยกันให้เกิดนวัตกรรมรองเท้าเพื่อสุขภาพลายไทย

คณะสถาปัตยกรรม ศิลปะและการออกแบบ
-

คณะวิทยาศาสตร์
Cancer remains a major global health challenge as the second-leading cause of human death worldwide. The traditional treatments for cancer beyond surgical resection include radiation and chemotherapy; however, these therapies can cause serious adverse side effects due to their high killing potency but low tumor selectivity. The FDA approved monoclonal antibodies (mAbs) that target TIGIT/PVR (T-cell immunoglobulin and ITIM domain/poliovirus receptor) which is an emerging immune checkpoint molecules has been developed; however, the clinical translation of immune checkpoint inhibitors based on antibodies is hampered due to immunogenicity, immunological-related side effects, and high costs, even though these mAbs show promising therapeutic efficacy in clinical trials. To overcome these bottlenecks, small-molecule inhibitors may offer advantages such as better oral bioavailability and tumor penetration compared to mAbs due to their smaller size. Here, we performed structure-based virtual screening of FDA-approved drug repertoires. The 100 screened candidates were further narrowed down to 10 compounds using molecular docking, with binding affinities ranging from -9.152 to -7.643 kcal/mol. These compounds were subsequently evaluated for their pharmacokinetic properties using ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) analysis, which demonstrated favorable drug-like characteristics. The lead compounds will be further analyzed for conformational changes and binding stability against TIGIT through molecular dynamics (MD) simulations to ensure that no significant conformational changes occur in the protein structure. Collectively, this study represents the potential of computational methods and drug repurposing as effective strategies for drug discovery, facilitating the accelerated development of novel cancer treatments.

คณะวิศวกรรมศาสตร์
The Thai Sign Language Generation System aims to create a comprehensive 3D modeling and animation platform that translates Thai sentences into dynamic and accurate representations of Thai Sign Language (TSL) gestures. This project enhances communication for the Thai deaf community by leveraging a landmark-based approach using a Vector Quantized Variational Autoencoder (VQVAE) and a Large Language Model (LLM) for sign language generation. The system first trains a VQVAE encoder using landmark data extracted from sign videos, allowing it to learn compact latent representations of TSL gestures. These encoded representations are then used to generate additional landmark-based sign sequences, effectively expanding the training dataset using the BigSign ThaiPBS dataset. Once the dataset is augmented, an LLM is trained to output accurate landmark sequences from Thai text inputs, which are then used to animate a 3D model in Blender, ensuring fluid and natural TSL gestures. The project is implemented using Python, incorporating MediaPipe for landmark extraction, OpenCV for real-time image processing, and Blender’s Python API for 3D animation. By integrating AI, VQVAE-based encoding, and LLM-driven landmark generation, this system aspires to bridge the communication gap between written Thai text and expressive TSL gestures, providing the Thai deaf community with an interactive, real-time sign language animation platform.