
"Niyom Thai" represents health-centric footwear adorned with traditional Thai patterns, embodying an innovative approach to sustainable development tailored to the current needs of local communities. These shoes utilize natural materials to mitigate fatigue and integrate safety technologies, including location tracking via a mobile application and heart rate monitoring. This addresses the aspects of convenience and well-being in both daily life and travel
เนื่องจากปัจจัยผู้คนให้ความสนใจเรื่องสุขภาพมากขึ้นเเละรองเท้านับเป็นอีกหนึ่งเทรนด์สุขภาพที่กำลังได้รับความสนใจในยุคนี้ อีกทั้งผ้าไทยจัดเป็นศิลปะ ที่มีเอกลักษณ์เเละความสวยงาม คณะผู้จัดทำจึงมีเเนวคิดที่จะออกแบบลวดลายไทยให้เข้ากับยุคสมัยเเต่ยังคงความเป็นเป็นไทยและนำเทคโนโลยีมาผสมผสานเข้าด้วยกันให้เกิดนวัตกรรมรองเท้าเพื่อสุขภาพลายไทย

คณะทันตแพทยศาสตร์
Objective or Background: Dental caries is still one of the most significant dental problems worldwide, with prevalence rates up to 90% among children and adults. Cariogenic bacteria, especially Streptococcus mutans, is the primary microorganism involved in the pathogenesis through carbohydrate metabolism and biofilm formation, which are challenging to eradicate. Histatin-5 (HST-5), a human salivary antimicrobial peptide, has demonstrated antimicrobial activity against various fungal and bacterial pathogens. Phytosphingosine (PHS), an endogenous bioactive sphingolipid found in fungi, plants, and humans, also shows antimicrobial properties. This study aimed to evaluate the killing activity of HST-5 alone and in combination with PHS against S. mutans under biofilm-stimulating conditions. Materials and Methods: Antimicrobial activity against a planktonic culture of S. mutans was evaluated using a time-kill assay, and biofilm-forming capacity was confirmed by crystal violet staining assay. The killing ability against 24h pre-formed biofilm was determined using Transferable Solid Phase (TSP) pin lid model. Synergistic activity between HST-5 and PHS was evaluated using the checkerboard technique. Additionally, the cytotoxicity of the tested agent on human gingival fibroblast cells (hGFs) was assessed after 1 h of incubation using an MTT assay. Results: A time-kill assay revealed that both HST-5 and PHS exhibit time- and concentration-dependent activity against the planktonic form of S. mutans. PHS achieved over 90% killing activity within 15 min at 5 μg/ml, whereas HST-5 required 30 min to reach 90% killing at 20 μM. The biofilm formation capacity of S. mutans was confirmed. The inhibitory concentrations (IC50) of HST-5 and PHS against S. mutans biofilm were 25 μM and 13.5 μg/ml, respectively. A synergistic interaction between HST-5 and PHS, with IC50 values reduced by 8-fold and 16-fold, respectively. No cytotoxic effects were observed in hGFs cells at the concentration of the synergistic interaction. Conclusions: Therefore, the combination of HST-5 and PHS may enhance the effectiveness of anti-infective agents against S. mutans biofilm, potentially preventing the development of dental caries.

วิทยาลัยนวัตกรรมการผลิตขั้นสูง
The objective of this research is to utilize waste slag in industrial applications and help mitigate flooding, water accumulation, and ponding issues. Currently, slag from the steel smelting or refining process is commonly used as a component in construction materials, such as road surfaces. However, slag has properties that make it difficult for water to permeate, leading to poor drainage and increased flooding problems. This study focuses on improving the properties of pavement materials to enhance their strength and water permeability. This can be achieved through physical structural modifications or the addition of chemical agents such as HPMC, which increases void spaces to facilitate water absorption and drainage according to required standards. The utilization of waste slag not only helps reduce production costs and improve material performance but also minimizes environmental impacts and promotes the sustainable use of resources.

คณะเทคโนโลยีการเกษตร
This project involves the development of a plant care system for dormitories using IoT (Internet of Things). The system is implemented through programming on an ESP-32 board and controlled via sensors for automated watering. The commands are operated through smartphones, supporting both iOS and Android. It is expected that this project will make plant care in dormitories easier and more convenient.