KMITL Innovation Expo 2025 Logo

Layla Hotel Robot

Layla Hotel Robot

Abstract

Layla, the hotel robot, is responsible for carrying guests’ luggage and guiding them to their accommodations. It is equipped with an internal map of the hotel, allowing it to navigate various locations efficiently. Additionally, it features an AI-powered system that enables interactive conversations in three major languages: Thai, English, and Chinese.

Objective

เนื่องจากปัญหาการขาดแคลนพนักงานโรงแรมในปัจจุบัน พนักงานจึงต้องทำหน้าที่หลายอย่างในเวลาเดียวกัน ทำให้ลูกค้าอาจต้องรอคิวนาน ดังนั้นเพื่อเพิ่มประสิทธิภาพการทำงานให้สะดวกและรวดเร็วยิ่งขึ้น จึงสร้างนวัตกรรมชิ้นนี้มาเพื่อช่วยลดภาระหน้าที่ของพนักงาน เช่น Bellboy, Concierge และ Receptionist เป็นต้น

Other Innovations

Sustainable conservation and utilization of Melaleuca cajuputi Powell

คณะเทคโนโลยีการเกษตร

Sustainable conservation and utilization of Melaleuca cajuputi Powell

This research investigates the traditional knowledge, biological characteristics, and bioactive compounds of Melaleuca cajuputi Powell, with a focus on its conservation and sustainable utilization. The study encompasses its applications in agriculture, healthcare, and bioenergy.

Read more
Plasma technology and nuclear fusion

คณะวิทยาศาสตร์

Plasma technology and nuclear fusion

Direct Arc Plasma Generator with Six Nozzles, Applications of Plasma Technology and Progress in Nuclear Fusion and Thailand Tokamak-1 (TT1) Development

Read more
Power of Leaves: A Natural Fluorescent Seed Coating Innovation for Anti-Counterfeiting

คณะเทคโนโลยีการเกษตร

Power of Leaves: A Natural Fluorescent Seed Coating Innovation for Anti-Counterfeiting

This experiment aimed to study the suitable types of polymers for coating with chlorophyll extract and the quality of cucumber seeds after coating. The experiment was planned using a Completely Randomized Design (CRD) with four replications, consisting of five methods involving seeds coated with different types of polymers: Polyvinylpyrrolidone, Sodium Alginate, Carboxy Methyl Cellulose, and Hydroxypropyl Methylcellulose, each polymer being coated alongside chlorophyll, with uncoated seeds serving as the control method. The coating substance was prepared by extracting chlorophyll from mango leaves, then mixed with each type of polymer at a concentration of 1%, using an 8% concentration of chlorophyll extract. The properties of each coating method, such as pH and viscosity of the coating substance, were examined before coating the cucumber seeds with a rotary disk coater model RRC150 at a coating rate of 1,100 milliliters per 1 kilogram of seeds. Subsequently, the seeds were dried to reach the initial moisture level using a hot air blower, and seed quality was assessed in various aspects, including seed moisture, germination rate under laboratory conditions, germination index, and seed fluorescence under a portable ultraviolet light illuminator, as well as light emission spectrum analysis using a Spectrophotometer. The experiment found that each type of polymer could be used to form a film together with chlorophyll, which had appropriate pH and viscosity for the coating without affecting seed quality and showed fluorescence on the seed surface both under portable ultraviolet light and spectral emission analysis with a Spectrophotometer. Using HPMC as the film-forming agent with chlorophyll was the most suitable method, enhancing seed fluorescence efficiency.

Read more