This project presents the development of a single-frequency GPS-based total electron content measurement tool. It applies theories related to total electron content in the ionospheric layer and the measurement of total electron content using GPS time delay to design the single-frequency GPS total electron content measurement tool. The tool consists of an antenna, a single-frequency GPS satellite receiver, a data processing unit for evaluating and calculating total electron content, and a display unit for showing total electron content data. The performance of the single-frequency GPS total electron content measurement tool is tested by comparing it with total electron content data obtained from the International Reference Ionosphere (IRI) model, which is a global reference model for electron content. The tool is also put to practical use. The results of the comparison and practical applications conclude that the single-frequency GPS-based total electron content measurement tool can be effectively utilized, with the difference from the IRI model being 50 TECU
ดาวเทียม Global Positioning System (GPS) มีการใช้กันอย่างแพร่หลาย เพื่อระบุตำแหน่งบนพื้นโลก และอำนวยความสะดวกต่าง ๆ ไม่ว่าจะเป็นการระบบนำร่องการขึ้นลงของเครื่องบิน ระบบขนส่งที่ใช้ใช้ระบบนำทาง GPS งานก่อสร้าง งานอุตสาหกรรม โดยใช้ GPS ระบุตำแหน่ง ในปัจจุบันได้มีการพัฒนาอุปกรณ์รับสัญญาณ GPS ให้มีความแม่นยำสูง แต่ยังมีปัจจัยอื่นที่ทำให้การรับสัญญาณ GPS เกิดความผิดพลาด ส่งผลกระทบโดยตรงต่อการเดินทางของสัญญาณจากดาวเทียมมายังพื้นโลก นั้นหมายความว่าความแม่นยำในการระบุตำแหน่งลดลงเนื่องจากความคลาดเคลื่อนที่เกิดขึ้นจากการเดินทางของสัญญาณดาวเทียมบนชั้นบรรยากาศไอโอโนสเฟียร์ เครื่องรับโดยใช้สัญญาณความถี่เดียวจะให้ข้อมูลที่สำคัญเกี่ยวกับความหนาแน่นของอิเล็กตรอนในชั้นบรรยากาศรอบนอก การวัดนี้จำเป็นสำหรับการใช้งานต่างๆ เช่น การจำลองบรรยากาศไอโอโนสเฟียร์สำหรับการตรวจสอบสภาพอากาศในอวกาศ และการแก้ไขสัญญาณ GPS โดยเฉพาะอย่างยิ่งในช่วงเวลาที่ความล่าช้าของไอโอโนสเฟียร์ส่งผลกระทบโดยตรงต่อการสื่อสารผ่านดาวเทียม การวิเคราะห์ความล่าช้าของสัญญาณ GPS ที่เกิดจากชั้นบรรยากาศรอบนอก ซึ่งประเมินผ่านการประมาณค่า GPS TEC ความถี่เดียว ช่วยให้สามารถกำหนดค่าความหนาแน่นของอิเล็กตรอนตามเส้นทางสัญญาณได้ แม้จะอาศัยความถี่เดียว แต่อัลกอริทึมและแบบจำลองขั้นสูงช่วยให้การประมาณค่า TEC แม่นยำโดยการเปรียบเทียบ GPS TEC ความถี่เดียวกับ TEC จากอัลกอริทึม IGS และแบบจำลอง IRI หลังจากที่ได้ทำการศึกษาและทบทวนงานวิจัยที่เกี่ยวข้องโดยเฉพาะการศึกษาค่าอิเล็กครอนรวมในชั้นบรรยากาศไอโอโนสเฟียร์ คณะผู้จัดทำได้นำงานวิจัยของ Thanapon Keokhumcheng and Prasert Kenpankho ที่นำเสนอเกี่ยวกับการหาค่าอิเล็กตรอนด้วยดาวเทียม GPS แบบความถี่เดียวมาศึกษาต่อในการจัดทำเครื่องวัดค่าค่าอิเล็กครอนรวมในชั้นบรรยากาศไอโอโนสเฟียร์ โครงงานนี้จะเป็นการนำค่าที่ได้จากเครื่องรับสัญญาณดาวเทียม GPS และนำข้อมูลที่ได้รับจากดาวเทียมไปวิเคราะห์หาค่า TEC และจะบันทึกผลข้อมูลแล้วแสดงผลข้อมูลออกมาผ่านจอ LCD โดยข้อมูลที่บันทึกจะรวมถึงค่าอิเล็กตรอนรวม วันที่ เวลา และตำแหน่งที่ทำการวัด ทำให้สามารถติดตามและเปรียบเทียบข้อมูลในภายหลังได้อย่างมีประสิทธิภาพ ใช้ USB Flash drive ในการเก็บข้อมูล

คณะวิศวกรรมศาสตร์
The presented project topic is Garbage Sorting Systems. The purpose is to study the operation and develop a waste sorting system that can automatically detect the type of waste using a proximity sensor to separate the types of metal and non-metal waste, as well as an ultrasonic sensor to check the amount of waste in the bin. If the amount of waste exceeds the specified amount, the system will send a notification to the communication device connected to the system, such as a smartphone or computer. The operation of the system is designed to increase the efficiency of waste management, reduce the burden of manual waste sorting, and promote recycling. This system can be applied in various places, such as educational institutions or public places, to help reduce the amount of waste that is not properly separated and increase the opportunity to reuse waste.

วิทยาลัยเทคโนโลยีและนวัตกรรมวัสดุ
-

คณะบริหารธุรกิจ
Parking space shortages in urban areas contribute to traffic congestion, inefficient land use, and environmental challenges. Automated Parking Systems (APS) provide an innovative solution by optimizing space utilization, reducing search times, and minimizing carbon emissions. This research investigates key factors influencing user adoption of APS technology using the UTAUT2 framework, focusing on variables such as Performance Expectancy, Effort Expectancy, Social Influence, Trust in Technology, and Environmental Consciousness. The APS Evolution project presents a smart parking solution that enhances efficiency, minimizes environmental impact, and improves user experience in urban settings. The initiative emphasizes technology-driven urban mobility and sustainable parking management to align with the evolving needs of modern cities.