The research on improving the strength of solid electrolytes aims to enhance the properties of solid electrolyte materials produced from cement and additives that help develop the cement structure to generate electricity. The main components include sodium chloride (NaCl) and graphite, which contribute to the material’s ability to generate a weak electrical current. The objective is to develop an electricity-generating flooring material. This study involves preparing a mixture of cement, water, sodium chloride (NaCl), and graphite to enhance the material’s electrical conductivity. It is highly anticipated that this research will lead to the development of concrete flooring capable of generating electricity and can be further expanded for future applications.
ในปัจจุบัน ความต้องการใช้พลังงานไฟฟ้าเพิ่มขึ้นนอย่างต่อเนื่อง ส่งผลให้เกิดการพัฒนาเทคโนโลยีและนวัตกรรมใหม่ ๆ เพื่อเพิ่มแหล่งพลังงานทางเลือกที่มีความยั่งยืนและเป็นมิตรต่อสิ่งแวดล้อม หนึ่งในแนวทางที่ได้รับความสนใจ คือการพัฒนาวัสดุที่สามารถผลิตและกักเก็บพลังงานไฟฟ้าได้ในตัวเอง ซึ่งสามารถนำไปใช้ในโครงสร้างพื้นฐานต่าง ๆเช่น พื้นทางเดิน อาคาร หรือพื้นที่สาธารณะ ดังนั้น งานวิจัยนี้จึงมีเป้าหมายเพื่อพัฒนาและปรับปรุงคุณสมบัติของเซลล์อิเล็กโทรไลต์ชนิดแข็งที่มีโครงสร้างพื้นฐานจากซีเมนต์ โดยมุ่งเน้นการเพิ่มความแข็งแรงของวัสดุควบคู่ไปกับการรักษาคุณสมบัติการนำไฟฟ้า เพื่อให้สามารถนำไปใช้งานเป็นวัสดุปูพื้นที่สามารถผลิตกระแสไฟฟ้าได้ งานวิจัยนี้คาดหวังว่าจะเป็นแนวทางสำคัญในการ พัฒนาวัสดุก่อสร้างสามารถต่อยอดไปสู่การประยุกต์ใช้ในอนาคตได้อย่างมีประสิทธิภาพ

คณะวิศวกรรมศาสตร์
Currently, lithium batteries are widely used in electronic devices and electric vehicles, making the estimation of their State of Health (SOH) crucial. Accurate SOH estimation helps extend battery lifespan, reduce maintenance costs, and prevent safety issues such as overheating or explosions. This project aims to study and analyze mathematical models of batteries and develop SOH estimation techniques using Neural Networks to enhance accuracy and evaluation speed. The experiment involved collecting charge and discharge data from three lithium battery cells under controlled temperature conditions while maintaining a constant current. The current, voltage, and time data were recorded and analyzed to determine the battery capacity for each cycle. These data were then used to train a Neural Network model. The results demonstrated an effective method for predicting battery health status. The outcomes of this project can contribute to the development of a Battery Management System (BMS) that improves battery efficiency and longevity. Additionally, it provides a foundation for applying artificial intelligence techniques in the energy sector effectively.

คณะบริหารธุรกิจ
BrushXchange is a toothbrush brand dedicated to reducing plastic waste in Thailand by offering toothbrushes made from recycled plastic with replaceable bristles. These products help minimize waste generated by traditional toothbrushes. The design is modern and user-friendly, emphasizing durability, comfort, and affordability, making it appropriate for health-conscious and environmentally aware consumers. The brand aims to drive change in the oral care industry by providing high-quality products at accessible prices. Its marketing strategy focuses on using social media platforms like Instagram and TikTok and collaborating with organizations that promote sustainability. The product is distributed through retail stores such as Lotus’s and Tops. BrushXchange also prioritizes environmental responsibility by using recycled paper packaging and organizing sustainability campaigns. The brand's long-term goal is to become a widely recognized brand image in the eco-friendly toothbrush market in Thailand while encouraging sustainable living habits within society.

คณะวิศวกรรมศาสตร์
The evaluation of mango yield and consumer behavior reflects an increasing awareness of product origins, with a growing demand for traceability to understand how the produce has been cultivated and managed. This study explores the relationship between mango characteristics and cultivation practices before harvest, using location identification to provide insights into these processes. To achieve this, a model was developed to detect and locate mangoes using 2D images via a Deep Learning approach. The study also investigates techniques to determine the real-world coordinates of mangoes from 2D images. The YOLOv8 model was employed for object detection, integrated with camera calibration and triangulation techniques to estimate the 3D positions of detected mangoes. Experiments involved 125 trials with randomized mango positions and camera placements at varying yaw and pitch angles. Parameters extracted from sequential images were compared to derive the actual 3D positions of the mangoes. The YOLOv8 model demonstrated high performance with prediction metrics of Precision (0.928), Recall (0.901), mAP50 (0.965), mAP50-95 (0.785), and F1-Score (0.914). These results indicate sufficient accuracy for predicting mango positions, with an average positional error of approximately 38 centimeters.