KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

Improving the strength of solid electrolyte cells

Abstract

The research on improving the strength of solid electrolytes aims to enhance the properties of solid electrolyte materials produced from cement and additives that help develop the cement structure to generate electricity. The main components include sodium chloride (NaCl) and graphite, which contribute to the material’s ability to generate a weak electrical current. The objective is to develop an electricity-generating flooring material. This study involves preparing a mixture of cement, water, sodium chloride (NaCl), and graphite to enhance the material’s electrical conductivity. It is highly anticipated that this research will lead to the development of concrete flooring capable of generating electricity and can be further expanded for future applications.

Objective

ในปัจจุบัน ความต้องการใช้พลังงานไฟฟ้าเพิ่มขึ้นนอย่างต่อเนื่อง ส่งผลให้เกิดการพัฒนาเทคโนโลยีและนวัตกรรมใหม่ ๆ เพื่อเพิ่มแหล่งพลังงานทางเลือกที่มีความยั่งยืนและเป็นมิตรต่อสิ่งแวดล้อม หนึ่งในแนวทางที่ได้รับความสนใจ คือการพัฒนาวัสดุที่สามารถผลิตและกักเก็บพลังงานไฟฟ้าได้ในตัวเอง ซึ่งสามารถนำไปใช้ในโครงสร้างพื้นฐานต่าง ๆเช่น พื้นทางเดิน อาคาร หรือพื้นที่สาธารณะ ดังนั้น งานวิจัยนี้จึงมีเป้าหมายเพื่อพัฒนาและปรับปรุงคุณสมบัติของเซลล์อิเล็กโทรไลต์ชนิดแข็งที่มีโครงสร้างพื้นฐานจากซีเมนต์ โดยมุ่งเน้นการเพิ่มความแข็งแรงของวัสดุควบคู่ไปกับการรักษาคุณสมบัติการนำไฟฟ้า เพื่อให้สามารถนำไปใช้งานเป็นวัสดุปูพื้นที่สามารถผลิตกระแสไฟฟ้าได้ งานวิจัยนี้คาดหวังว่าจะเป็นแนวทางสำคัญในการ พัฒนาวัสดุก่อสร้างสามารถต่อยอดไปสู่การประยุกต์ใช้ในอนาคตได้อย่างมีประสิทธิภาพ

Other Innovations

KIOSK: Smart Board Information Interactive Display

คณะวิศวกรรมศาสตร์

KIOSK: Smart Board Information Interactive Display

This project presents an interactive kiosk system designed to facilitate students, staff, and visitors within the university campus. The kiosk provides real-time event updates, news, and university document access via QR codes or email. It integrates a 3D map of the engineering department with navigation assistance, allowing users to locate offices and other facilities efficiently. Additionally, it features a room booking system, enabling users to reserve spaces through an online platform and check in via QR code scanning at the kiosk. By integrating digital technology and smart urban solutions, this system enhances accessibility, campus management, and visitor experience.

Read more
Artificial intelligence of things system for monitoring and controlling irrigation using weather information

วิทยาเขตชุมพรเขตรอุดมศักดิ์

Artificial intelligence of things system for monitoring and controlling irrigation using weather information

This research focuses on the design and development of a prototype Artificial Intelligence of Things (AIoT) system for monitoring and controlling irrigation using weather information. The system consists of four main components: 1) Weather Station – This component includes various sensors such as air temperature, relative humidity, wind speed, and sunlight duration, among others, to collect real-time weather data. 2) Controller Unit – This unit is equipped with machine learning algorithms or models to estimate the reference evapotranspiration (ETo) and calculate the plant’s water requirement by integrating the crop coefficient (Kc) with other plant-related data. This enables the system to determine the optimal irrigation amount based on plant needs automatically. 3) User Interface (UI) and Display – This section allows farmers or users to input relevant information, such as plant type, soil type, irrigation system type, number of water emitters, planting distance, and growth stages. It also provides a display for monitoring and interaction with the system. 4) Irrigation Unit – This component is responsible for controlling the water supply and managing the irrigation emitters to ensure efficient water distribution based on the calculated requirements.

Read more
Vision-Based Spacecraft Pose Estimation

วิทยาลัยอุตสาหกรรมการบินนานาชาติ

Vision-Based Spacecraft Pose Estimation

The capture of a target spacecraft by a chaser is an on-orbit docking operation that requires an accurate, reliable, and robust object recognition algorithm. Vision-based guided spacecraft relative motion during close-proximity maneuvers has been consecutively applied using dynamic modeling as a spacecraft on-orbit service system. This research constructs a vision-based pose estimation model that performs image processing via a deep convolutional neural network. The pose estimation model was constructed by repurposing a modified pretrained GoogLeNet model with the available Unreal Engine 4 rendered dataset of the Soyuz spacecraft. In the implementation, the convolutional neural network learns from the data samples to create correlations between the images and the spacecraft’s six degrees-of-freedom parameters. The experiment has compared an exponential-based loss function and a weighted Euclidean-based loss function. Using the weighted Euclidean-based loss function, the implemented pose estimation model achieved moderately high performance with a position accuracy of 92.53 percent and an error of 1.2 m. The in-attitude prediction accuracy can reach 87.93 percent, and the errors in the three Euler angles do not exceed 7.6 degrees. This research can contribute to spacecraft detection and tracking problems. Although the finished vision-based model is specific to the environment of synthetic dataset, the model could be trained further to address actual docking operations in the future.

Read more