With the urgent need for rapid screening of Aflatoxin B1 (AFB1) due to its association with increased liver cirrhosis and hepatocellular carcinoma cases from contaminated agricultural foods, we propose a novel electrochemical aptasensor. This aptasensor is based on trimetallic nanoparticles AuPt-Ru supported by reduced graphene oxide (AuPt-Ru/RGO) modified on a low-cost and disposable goldleaf electrode (GLEAuPt-Ru/RGO) for detection of AFB1. The trimetallic nanoparticle AuPt-Ru was synthesized using an ultrasonic-driven chemical reduction method. The synthesized AuPt-Ru exhibited a waxberry-like appearance, with AuPt core-shell structure and ruthenium dispersed over the particles. The average particle size was 57.35 ± 8.24 nm. The AuPt-Ru was integrated into RGO sheets (inner diameter of 0.5 to 1.6 µm) in order to enhance electron transfer efficiency and increase the specific immobilizing surface area of the thiol-5’-terminated modified aptamer (Apt) to target AFB1. With a large electrochemical surface area and low electrochemical impedance, GLEAuPt-Ru/RGO displays ultra-high sensitivity for AFB1 detection. Differential pulse voltammetry (DPV) measurements revealed a linear range for AFB1 detection range from 0.3 to 30.0 pg mL-1 (R2 = 0.9972), with a limit of detection (LOD, S/N = 3) and a limit of quantification (LOQ, S/N = 10) of 0.009 pg mL-1 and 0.031 pg mL-1, respectively. The developed aptasensor also demonstrated excellent accuracy in real agricultural products, including dried red chili, garlic, peanut, pepper, and Thai jasmine rice, achieving recovery rates between 94.6 and 107.9%. The fabricated aptamer-based GLEAuPt-Ru/RGO performance is comparable to that of a modified commercial electrode, which has great potential application prospects for detecting AFB1 in agricultural products.
อะฟลาทอกซิน (AFs) เป็นสารพิษที่ผลิตโดยเชื้อรา Aspergillus flavus (A. flavus) และ Aspergillus parasiticus (A. parasiticus) โดยมาก AFs จะพบจากการปนเปื้อนในผลิตภัณฑ์ทางการเกษตรที่เก็บในสภาพแวดล้อมที่มีความชื้นและอุณหภูมิสูง เช่น พริกแห้ง กระเทียม ถั่วลิสง พริกไทย และข้าวสาร เป็นต้น AFs ในธรรมชาติสามารถพบได้หลายชนิด ได้แก่ AFB1, AFB2, AFG1, AFG2 และในรูปแบบเมตาบอไลต์คือ AFM1 และ AFM2 โดยเฉพาะ AFB1 เป็นที่รู้จักว่าเป็นสารก่อมะเร็งที่มีความร้ายแรงมากที่สุดและได้รับการจัดเป็นสารก่อมะเร็งกลุ่ม 1 โดยองค์กรวิจัยมะเร็งนานาชาติ (The international cancer research: IARC) เนื่องจากมีความเสี่ยงสูงต่อการเกิดมะเร็งตับ (Hepatocellular carcinoma: HCC) ส่งผลให้การบริโภคอาหารที่ปนเปื้อน AFB1 มีผลกระทบทางสุขภาพต่อทั้งมนุษย์และสัตว์ทั่วโลก ในหลายประเทศได้ตั้งข้อกำหนดมาตรฐานปริมาณ AFB1 ในอาหารไม่เกิน 20 ไมโครกรัมต่อกิโลกรัม (64.05 นาโนโมลต่อลิตร) เพื่อควบคุมความปลอดภัยด้านอาหารและลดความเสี่ยงจากสารก่อมะเร็งนี้ ดังนั้น การพัฒนาวิธีการตรวจวัดที่มีความไว และความจำเพาะสูงในการตรวจหา AFB1 ในตัวอย่างผลิตภัณฑ์ทางการเกษตรจึงมีความสำคัญอย่างมากต่อการควบคุมคุณภาพอาหาร เทคนิคการตรวจวัดทางชีวภาพด้วยไบโอเซ็นเซอร์ไฟฟ้าเคมี (Electrochemical biosensing) ได้รับความสนใจอย่างมากในปัจจุบัน เนื่องจากมีข้อดีหลายประการ เช่น ตรวจวัดได้อย่างรวดเร็ว ความจำเพาะสูง ความไวสูง ใช้งานง่ายและมีต้นทุนการผลิตต่ำ งานวิจัยหลายฉบับได้รายงานเกี่ยวกับการพัฒนาไบโอเซนเซอร์ไฟฟ้าเคมีที่มีการใช้ร่วมกับสารชีวภาพ เช่น แอนติบอดี, เอนไซม์, แอปตาเมอร์, และ DNA ที่ใช้ในการตรวจ AFB1 โดยสารชีวภาพเหล่านี้จะถูกตรึงไว้กับ วัสดุนาโน (Nanomaterials) ที่มีพื้นที่ผิวจำเพาะสูงและสมบัติการนำไฟฟ้าที่ดีเยี่ยม เช่น อนุภาคนาโนทอง (AuNPs) ได้ถูกนำมาใช้กันอย่างแพร่หลายในการสร้างวัสดุตรวจวัดที่ให้สัญญาณเชิงไฟฟ้าเคมี เนื่องจากมีเสถียรภาพทางเคมีสูงและความเข้ากันได้ทางชีวภาพ อีกทั้งอนุภาคนาโนแพลทินัม (PtNPs) ซึ่งเป็นที่รู้จักกันมาอย่างยาวนานว่ามีความสามารถในการเร่งปฏิกิริยาที่ดีเยี่ยม และรูทิเนียม (RuNPs) ยังมีความสามารถในการเพิ่มเสถียรภาพและสมรรถนะในการเร่งปฏิกิริยาของวัสดุเชิงประกอบนาโนโลหะผสม ปัจจุบันมีการสังเคราะห์อนุภาคโลหะผสมหลากหลายชนิดมากขึ้น เช่น FePtCu และ PtPdTe ซึ่งมีคุณสมบัติทางการเร่งปฏิกิริยาที่ดีกว่าอนุภาคนาโนโลหะเดี่ยวและอนุภาคนาโนโลหะคู่ ด้วยเหตุนี้ การรวมข้อดีของ AuNPs, PtNPs และ RuNPs เข้าด้วยกัน แสดงให้เห็นถึงเสถียรภาพ สมรรถนะในการเร่งปฏิกิริยา และความสามารถในการตรึงโมเลกุลชีวภาพได้อย่างยอดเยี่ยม นอกจากนี้ รีดิวซ์กราฟีนออกไซด์ (RGO) เป็นอีกหนึ่งวัสดุนาโนที่ได้รับความสนใจในการใช้เป็นวัสดุตรวจวัดทางไฟฟ้าเคมี ซึ่ง RGO นั้นเป็นคาร์บอนนาโนที่เกิดจากการจัดเรียงชั้นของกราฟีนในโครงสร้าง ซึ่งสามารถปรับแต่งขนาดและรูปร่างได้ และมีคุณสมบัติที่น่าสนใจหลายประการ เช่น พื้นที่ผิวสูง (มากกว่า 600 m²/g) ความทนทานเชิงกลที่ดีเยี่ยม (200-500 MPa) การนำความร้อน (30-2600 W/m·K) และสมบัตินำไฟฟ้าสูง (มากกว่า 667 S/m) รวมถึงพฤติกรรมทางไฟฟ้าเคมีที่ดีเยี่ยม ด้วยคุณสมบัติดังกล่าวของวัสดุนาโน ในงานวิจัยนี้ได้ศึกษาสภาวะที่เหมาะสมในการสังเคราะห์และคุณสมบัติทางไฟฟ้าของสารประกอบนาโนโลหะสาม AuPt-Ru ที่ยึดติดบนพื้นผิว RGO (AuPt-Ru/RGO) พบว่า AuPt-Ru/RGO ที่สังเคราะห์ขึ้นมีสมบัตินำไฟฟ้าสูง ช่วยเร่งการถ่ายโอนอิเล็กตรอน ทำให้ปฏิกิริยาเกิดเร็วขึ้นและแสดงสมบัติเป็นตัวเร่งปฏิกิริยาที่ดี อีกทั้งยังสามารถเพิ่มประสิทธิภาพการตรวจวัดที่มีความเฉพาะเจาะจงต่อ AFB1 มากยิ่งขึ้นด้วยการจับกับแอปตาเมอร์ที่มีการดัดแปลงด้วยหมู่ไทออล (Thiol-terminated modified aptamer: 5’-thiol- GTT GGG CAC GTG TTG TCT CTC TGT GTC TCG TGC CCT TCG CTA GGC CCA CA -3’; Apt) ผ่านพันธะไทออลระหว่างแอปตาเมอร์และวัสดุเชิงประกอบ AuPt-Ru/RGO ในงานวิจัยนี้ยังมีการใช้ทองคำเปลว 24 กะรัต มาสร้างเป็นขั้วไฟฟ้าแบบใช้แล้วทิ้ง (Goldleaf electrode: GLE) เพื่อทดแทนขั้วไฟฟ้าที่มีการจำหน่ายในเชิงพาณิชย์ เช่น แท่งทองคำหรือแพลทินัมที่มีราคาสูง ทองคำเปลวที่นำมาใช้นั้นมีความบางและเกิดการฉีกขาดได้ง่าย แต่ด้วยข้อดีของทองคำเปลวที่มีสมบัติการนำไฟฟ้าได้ดีและทนทานต่อสารเคมี การใช้เทปพอลิอิไมด์มาเป็นฐานรองในการผลิต GLE ช่วยเสริมความแข็งแรงและความทนทานต่อการฉีกขาด รวมถึงมีการใช้งานแผ่นทองแดงนำไฟฟ้าเพื่อช่วยเพิ่มชุดสัมผัสทางไฟฟ้าให้กับ GLE โดยขั้วไฟฟ้า GLE ที่สร้างขึ้นมีขนาดอยู่ที่ 1.0 x 2.5 มิลลิเมตร และบริเวณจุดทำปฏิกิริยา (Planar-disc) มีเส้นผ่านศูนย์กลางอยู่ที่ 0.5 มิลลิเมตร และทำการปรับปรุงพื้นผิวด้วย AuPt-Ru/RGO สำหรับการตรวจวัดทางไฟฟ้าเคมีของ AFB1 (GLEAuPt-Ru/RGO) สามารถตรวจวัดตัวอย่างได้ที่ปริมาตรเพียง 15 ไมโครลิตร อีกทั้งการใช้แผ่นทองคำเปลวเป็นขั้วไฟฟ้าที่มีราคาถูกยังเน้นให้เห็นถึงศักยภาพในการสร้างเซ็นเซอร์ที่มีต้นทุนต่ำ ใช้ปริมาณสารตรวจวัดในปริมาณที่น้อย จึงเหมาะสำหรับการใช้งานแบบใช้แล้วทิ้งได้

คณะวิศวกรรมศาสตร์
Stirling engine is the external heated engine that heat is sup-plied externally to the heater part of the engine. Thus, Stirling cycle engine can be employed with various sources of renewable energy such as biomass, biofuel, solar energy, geothermal energy, recovery heat, and waste. The integration of gasifier, burner, and heat engine as a power system offers more fuel choices of each local area with potential resources resulting independent from shortage and cost fluctuation of fossil fuel. This research aims to investigate the integration of the Stirling engine with a wood pellet gasifier for electric power generation. Biomass can be controlled to have continuously combustion with ultra-low toxic emission. Stirling engine, therefore, is a promising alternative in small-scale-electricity production. Even though many biomass-powered Stirling engines were successfully constructed and marketed but these engines and the use of biomass resources as fuel for power generation are quite new concepts in some developing countries. Especially, the capital cost of this engine is high and unaffordable for installation compared to other power systems. Therefore, this research aims to the study attractive and feasibility of the compact Stirling engine with green energy.

คณะเทคโนโลยีสารสนเทศ
Currently, the issue of developmental writing disabilities in children is a matter of great importance for school-age children. Diagnosing whether a child has developmental writing disabilities relies on writing skill assessments, which are administered to those seeking diagnosis and evaluated by medical professionals or experts. However, there are still limitations in the diagnostic process, which depends heavily on expert physicians, leading to a high demand for human resources. To address this, we have developed a method for scoring writing skill assessments using image processing technology, based on existing scoring criteria. Currently, three criteria are used for scoring: writing position, article format, and copying speed. We have also created a web application to make the system more accessible and easier to use.

คณะวิศวกรรมศาสตร์
This Project has been undertaken to address the need for skill development and knowledge enhancement in pneumatic systems and automation control, which are crucial in today’s manufacturing industry. Pneumatic systems play a vital role in various production processes, including machine control, automated devices, and assembly lines. However, the Department of Measurement and Control Engineering currently lacks a laboratory dedicated to the study and experimentation of pneumatic systems due to the deterioration and lack of maintenance of the previously used equipment. This has resulted in students missing the opportunity to practice essential skills required in the industrial sector. The authors of this thesis recognize the necessity of reviving and developing a pneumatic laboratory that can effectively support teaching, learning, and research activities. This project focuses on studying and developing industrial robotic arm control systems and pneumatic systems, integrating modern technologies such as Programmable Logic Controllers (PLC) and AI Vision. These systems are intended to be applicable to real-world industrial contexts. The outcomes of this project are expected to not only enhance the understanding of relevant technologies but also aim to transform the laboratory into a vital learning hub for current and future students. Furthermore, this initiative seeks to improve the competitiveness of students in the job market and support the development of innovations in the manufacturing industry in the years to come.