The design and construction of a detailed bathroom model with structural components aim to provide a comprehensive understanding of plumbing and electrical systems in bathrooms. This project enables learners to study the intricacies of bathroom infrastructure through a highly detailed model.
โครงสร้างนั้นเป็นสิ่งสำคัญสำหรับการก่อสร้าง เนื่องจากเป็นรากฐานสำคัญในการออกแบบตกแต่งภายใน ทั้งในด้านกฎหมายการก่อสร้างและการอยู่อาศัย การเรียนและเข้าใจพื้นฐานโครงสร้างอย่างถูกต้องจึงเป็นสิ่งสำคัญ
วิทยาเขตชุมพรเขตรอุดมศักดิ์
-
คณะครุศาสตร์อุตสาหกรรมและเทคโนโลยี
Crispy Rice-berry Snack is a product made from broken rice-berry rice that has been processed into a snack that is thin and crispy, bite-sized. Broken rice-berry rice is cooked, finely ground, and mixed with other ingredients to increase its nutritional value, such as adding plant seeds, adding plant protein nutrients, and then forming it into sheets using heat. The resulting product is a thin sheet, purple-brown in color, crispy, and has the smell of the ingredients used in the production process. It does not contain sugar or sweeteners. It is used as a snack with tea or coffee. Crispy Rice-berry Waffle is a product that contains complete nutrients, including carbohydrates, protein, and fat, which are derived from the ingredients in the production formula.
คณะวิศวกรรมศาสตร์
This research suggested natural hemp fiber-reinforced ropes (FRR) polymer usage to reinforce recycled aggregate square concrete columns that contain fired-clay solid brick aggregates in order to reduce the high costs associated with synthetic fiber-reinforced polymers (FRPs). A total of 24 square columns of concrete were fabricated to conduct this study. The samples were tested under a monotonic axial compression load. The variables of interest were the strength of unconfined concrete and the number of FRRlayers. According to the results, the strengthened specimens demonstrated an increased compressive strength and ductility. Notably, the specimens with the smallest unconfined strength demonstrated the largest improvement in compressive strength and ductility. Particularly, the compressive strength and strain were enhanced by up to 181% and 564%, respectively. In order to predict the ultimate confined compressive stress and strain, this study investigated a number of analytical stress–strain models. A comparison of experimental and theoretical findings deduced that only a limited number of strength models resulted in close predictions, whereas an even larger scatter was observed for strain prediction. Machine learning was employed by using neural networks to predict the compressive strength. A dataset comprising 142 specimens strengthened with hemp FRP was extracted from the literature. The neural network was trained on the extracted dataset, and its performance was evaluated for the experimental results of this study, which demonstrated a close agreement.