KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

Designed Quality coffee from fermentation

Designed Quality coffee from fermentation

Abstract

Coffee is a critical agricultural commodity to be used to produce a premium beverage to serve people worldwide. Coffee microbiome turned to be an essential tool to improve the bean quality through the natural fermentation. Therefore, understanding the microbial diversities could create the final product's better quality. This study investigated the natural microbial consortium during the wet process fermentation of coffee onsite in Thailand to characterize the microorganisms involved in correlation toward the biochemical characteristics and metabolic attributes. Roasting is another important step in developing the complex flavor/ aroma that make coffee to be enjoyable. During the roasting process, the beans undergo many complex and alternatively change in the physicochemical properties from the gained substances in the fermentation process. The changing in the formation of the substances responsible for the sensory qualities, physicochemical/ aroma attributes as well as the health benefits of the final product. Using the starter culture could also develop the distinguished characteristics of coffee (Research collaboration with Van Hart company)

Objective

-

Other Innovations

Detection of Durian Leaf Diseases Using Image Analysis and Artificial Intelligence

คณะเทคโนโลยีการเกษตร

Detection of Durian Leaf Diseases Using Image Analysis and Artificial Intelligence

Durian is a crucial economic crop of Thailand and one of the most exported agricultural products in the world. However, producing high-quality durian requires maintaining the health of durian trees, ensuring they remain strong and disease-free to optimize productivity and minimize potential damage to both the tree and its fruit. Among the various diseases affecting durian, foliar diseases are among the most common and rapidly spreading, directly impacting tree growth and fruit quality. Therefore, monitoring and controlling leaf diseases is essential for preserving durian quality. This study aims to apply image analysis technology combined with artificial intelligence (AI) to classify diseases in durian leaves, enabling farmers to diagnose diseases independently without relying on experts. The classification includes three categories: healthy leaves (H), leaves infected with anthracnose (A), and leaves affected by algal spot (S). To develop the classification model, convolutional neural network (CNN) algorithms—ResNet-50, GoogleNet, and AlexNet—were employed. Experimental results indicate that the classification accuracy of ResNet-50, GoogleNet, and AlexNet is 93.57%, 93.95%, and 68.69%, respectively.

Read more
BottleBank - Automatic Waste Collection Bin for Plastic and Cans

คณะวิทยาศาสตร์

BottleBank - Automatic Waste Collection Bin for Plastic and Cans

This project presents the development of an automatic recycling machine for plastic bottles and cans, utilizing Machine Learning for packaging classification through image processing, integrated with smart sensor systems for quality inspection and operation control. The system connects to a Web Application for real-time monitoring and control. Once the packaging type is verified, the system automatically calculates the refund value and processes payment through e-wallet or issues cash vouchers. The system can be installed in public spaces to promote waste segregation at source, reduce contamination, and increase recycling efficiency. It also provides financial incentives to encourage public participation in waste management. This project demonstrates the potential of combining Machine Learning and smart sensor systems in developing accurate, convenient, and sustainable waste management solutions.

Read more
Underground Cable Testing and Analysis

คณะวิศวกรรมศาสตร์

Underground Cable Testing and Analysis

Due to the modern urban system's high demand for stable electricity supply, underground cable power transmission has been increasingly adopted as a replacement for overhead power transmission. However, underground cable transmission still faces several operational challenges, such as significantly higher investment costs compared to overhead transmission, prolonged repair times in the event of system failures, limited fault analysis capabilities, and restricted capacity for additional load handling. This research project is designed to study the issues associated with the 22 kV XLPE underground cable system by utilizing the polarization and depolarization current analysis technique, a modern insulation diagnostic method.

Read more