
Coffee is a critical agricultural commodity to be used to produce a premium beverage to serve people worldwide. Coffee microbiome turned to be an essential tool to improve the bean quality through the natural fermentation. Therefore, understanding the microbial diversities could create the final product's better quality. This study investigated the natural microbial consortium during the wet process fermentation of coffee onsite in Thailand to characterize the microorganisms involved in correlation toward the biochemical characteristics and metabolic attributes. Roasting is another important step in developing the complex flavor/ aroma that make coffee to be enjoyable. During the roasting process, the beans undergo many complex and alternatively change in the physicochemical properties from the gained substances in the fermentation process. The changing in the formation of the substances responsible for the sensory qualities, physicochemical/ aroma attributes as well as the health benefits of the final product. Using the starter culture could also develop the distinguished characteristics of coffee (Research collaboration with Van Hart company)
-

คณะศิลปศาสตร์
As a value-added product of locally sourced fruits in Phang Nga, stevia-sweetened jelly offers a healthy and sustainable option for consumers seeking reduced sugar intake. This product has the potential to become a popular souvenir, promoting local agriculture and boosting the regional economy.

วิทยาเขตชุมพรเขตรอุดมศักดิ์
Durian is an important economic crop in Thailand that is affected by foliar diseases such as rust, leaf blight, and leaf spot. These diseases reduce the quality of the yield and increase management costs. This research focuses on developing AI software for screening durian leaf diseases by applying deep learning technology to classify different types of leaf lesions.

คณะเทคโนโลยีการเกษตร
The objective of this experiment was to determine the effect of nitrogen and potassium concentration combination with photoperiod on the growth of Viola in a plant factory to increase the quality of the products, reduce the production time and increase the production cycle throughout the year. The experimental plan was 3x3 Factorial in CRD with nine treatments and three replications (six plants per replication). The factor of this study was two factors; the first factor was three different concentrations of nitrogen and potassium in ratios of 1:1, 1:2 and 2:1. The second factor was the application of different photoperiods. There were 1) 24-hours photoperiod, 2) 8-hours light/16-hours dark photoperiod (Induced flowering state: 13-hours light/11-hours dark photoperiod) and 3) 5-hours light/3-hours dark photoperiod. Controlled temperature at 25 °C, the EC=1.5-2.0 mS/cm and the pH=5.8-6.5 in all treatment. The result showed that the concentration of N: K in the ratio of 1:1 combined with 24-hour photoperiod was the most vegetative growth and also maximizes reproductive growth. The overall great sensory evaluation was an acceptable level and suitable for cooking or decorating dishes. Therefore, the concentration of N: K in the ratio of 1:1 combined with 24-hour photoperiod is the best treatment to increase the quality of the product, reduce the production time of viola flowers in each cycle from 90-100 days down to 43-45 days which is good for farmers.