KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

Designed Quality coffee from fermentation

Designed Quality coffee from fermentation

Abstract

Coffee is a critical agricultural commodity to be used to produce a premium beverage to serve people worldwide. Coffee microbiome turned to be an essential tool to improve the bean quality through the natural fermentation. Therefore, understanding the microbial diversities could create the final product's better quality. This study investigated the natural microbial consortium during the wet process fermentation of coffee onsite in Thailand to characterize the microorganisms involved in correlation toward the biochemical characteristics and metabolic attributes. Roasting is another important step in developing the complex flavor/ aroma that make coffee to be enjoyable. During the roasting process, the beans undergo many complex and alternatively change in the physicochemical properties from the gained substances in the fermentation process. The changing in the formation of the substances responsible for the sensory qualities, physicochemical/ aroma attributes as well as the health benefits of the final product. Using the starter culture could also develop the distinguished characteristics of coffee (Research collaboration with Van Hart company)

Objective

-

Other Innovations

Effect of fructooligosaccharide supplementation on growth performance, intestinal morphology, intestinal microbiota stress index carcass quality and meat quality of broiler

คณะเทคโนโลยีการเกษตร

Effect of fructooligosaccharide supplementation on growth performance, intestinal morphology, intestinal microbiota stress index carcass quality and meat quality of broiler

Supplementing broilers with different levels of fructooligosaccharides (FOS) under stress conditions, such as higher stocking densities and recycled litter that were not a significant difference in broiler performance, carcass quality and meat quality between the FOS-supplemented groups and the control group (p>0.05). FOS supplementation improved intestinal health by increasing the villus height to crypt depth ratio Lactobacillus populations increased, and Escherichia coli decreased with FOS supplementation. The heterophil-to-lymphocyte ratio was reduced which indicated lower stress.

Read more
DISPOSABLE AND LOW-COST GOLDLEAF ELECTRODE-DECORATED AuPt-Ru/RGO NANOCOMPOSITE FOR ULTRASENSITIVE ELECTROCHEMICAL APTASENSOR QUANTIFICATION OF  AFLATOXIN B1 IN AGRICULTURAL PRODUCTS

คณะวิทยาศาสตร์

DISPOSABLE AND LOW-COST GOLDLEAF ELECTRODE-DECORATED AuPt-Ru/RGO NANOCOMPOSITE FOR ULTRASENSITIVE ELECTROCHEMICAL APTASENSOR QUANTIFICATION OF AFLATOXIN B1 IN AGRICULTURAL PRODUCTS

With the urgent need for rapid screening of Aflatoxin B1 (AFB1) due to its association with increased liver cirrhosis and hepatocellular carcinoma cases from contaminated agricultural foods, we propose a novel electrochemical aptasensor. This aptasensor is based on trimetallic nanoparticles AuPt-Ru supported by reduced graphene oxide (AuPt-Ru/RGO) modified on a low-cost and disposable goldleaf electrode (GLEAuPt-Ru/RGO) for detection of AFB1. The trimetallic nanoparticle AuPt-Ru was synthesized using an ultrasonic-driven chemical reduction method. The synthesized AuPt-Ru exhibited a waxberry-like appearance, with AuPt core-shell structure and ruthenium dispersed over the particles. The average particle size was 57.35 ± 8.24 nm. The AuPt-Ru was integrated into RGO sheets (inner diameter of 0.5 to 1.6 µm) in order to enhance electron transfer efficiency and increase the specific immobilizing surface area of the thiol-5’-terminated modified aptamer (Apt) to target AFB1. With a large electrochemical surface area and low electrochemical impedance, GLEAuPt-Ru/RGO displays ultra-high sensitivity for AFB1 detection. Differential pulse voltammetry (DPV) measurements revealed a linear range for AFB1 detection range from 0.3 to 30.0 pg mL-1 (R2 = 0.9972), with a limit of detection (LOD, S/N = 3) and a limit of quantification (LOQ, S/N = 10) of 0.009 pg mL-1 and 0.031 pg mL-1, respectively. The developed aptasensor also demonstrated excellent accuracy in real agricultural products, including dried red chili, garlic, peanut, pepper, and Thai jasmine rice, achieving recovery rates between 94.6 and 107.9%. The fabricated aptamer-based GLEAuPt-Ru/RGO performance is comparable to that of a modified commercial electrode, which has great potential application prospects for detecting AFB1 in agricultural products.

Read more
SOH  Estimation for  Li-ion battery

คณะวิศวกรรมศาสตร์

SOH Estimation for Li-ion battery

Currently, lithium batteries are widely used in electronic devices and electric vehicles, making the estimation of their State of Health (SOH) crucial. Accurate SOH estimation helps extend battery lifespan, reduce maintenance costs, and prevent safety issues such as overheating or explosions. This project aims to study and analyze mathematical models of batteries and develop SOH estimation techniques using Neural Networks to enhance accuracy and evaluation speed. The experiment involved collecting charge and discharge data from three lithium battery cells under controlled temperature conditions while maintaining a constant current. The current, voltage, and time data were recorded and analyzed to determine the battery capacity for each cycle. These data were then used to train a Neural Network model. The results demonstrated an effective method for predicting battery health status. The outcomes of this project can contribute to the development of a Battery Management System (BMS) that improves battery efficiency and longevity. Additionally, it provides a foundation for applying artificial intelligence techniques in the energy sector effectively.

Read more