Background: The RGL3 gene plays a role in key signal transduction pathways and has been implicated in hypertension risk through the identification of a copy number variant deletion in exon 6. Genome-wide association studies have highlighted RGL3 as associated with hypertension, providing insights into the genetic underpinnings of the condition and its protective effects on cardiovascular health. Despite these findings, there is a lack of data that confirms the precise role of RGL3 in hypertension. Additionally, the functional impact of certain variants, particularly those classified as variants of uncertain significance, remains poorly understood. Objectives: This study aims to analyze alterations in the RGL3 protein structure caused by mutations and validate the location of the ligand binding sites. Methods: Clinical variants of the RGL3 gene were obtained from NCBI ClinVar. Variants of uncertain significance and likely benign were analyzed. Multiple sequence alignment was conducted using BioEdit v7.7.1. AlphaFold 2 predicted the wild-type and mutant 3D structures, followed by quality assessment via PROCHECK. Functional domain analysis of RasGEF, RASGEF_NTER, and RA domains was performed, and BIOVIA Discovery Studio Visualizer 2024 was used to evaluate structural and physicochemical changes. Results: The analysis of 81 RGL3 variants identified 5 likely benign and 76 variants of uncertain significance (VUS), all of which were missense mutations. Structural modeling using AlphaFold 2 revealed three key domains: RasGEF_NTER, RasGEF, and RA, where mutations induced conformational changes. Ramachandran plot validation confirmed 79.7% of residues in favored regions, indicating an overall reliable structure. Moreover, mutations within RasGEF and RA domains altered polarity, charge, and stability, suggesting potential functional disruptions. These findings provide insight into the structural consequences of RGL3 mutations, contributing to further functional assessments. Discussion & Conclusion: The identified RGL3 mutations induced physicochemical alterations in key domains, affecting charge, polarity, hydrophobicity, and flexibility. These changes likely disrupt interactions with Ras-like GTPases, impairing GDP-GTP exchange and cellular signaling. Structural analysis highlighted mutations in RasGEF and RA domains that may interfere with activation states, potentially affecting protein function and stability. These findings suggest that mutations in RGL3 could have functional consequences, emphasizing the need for further molecular and functional studies to explore their pathogenic potential.
ยีน RGL3 มีบทบาทในการส่งสัญญาณระดับเซลล์ที่สำคัญ และมีความเชื่อมโยงกับความเสี่ยงต่อภาวะความดันโลหิตสูงเนื่องจากการกลายพันธุ์ของยีนในเอ็กซอน 6 การศึกษาความสัมพันธ์เชื่อมโยงในจีโนม (GWAS) แสดงให้เห็นว่า RGL3 เกี่ยวข้องกับภาวะความดันโลหิตสูง ซึ่งทำให้เห็นถึงข้อมูลเชิงลึกเกี่ยวกับพื้นฐานทางพันธุกรรมของภาวะนี้ และอาจช่วยให้ค้นพบผลที่สามารถปกป้องหัวใจและหลอดเลือดจากยีนนี้ แม้ว่าจะมีการค้นพบดังกล่าว แต่ปัจจุบันก็ยังขาดข้อมูลที่ยืนยันบทบาทที่ชัดเจนของ RGL3 ในภาวะความดันโลหิตสูง นอกจากนี้ ผลกระทบทางด้านโครงสร้าง และหน้าที่ของการแปรผันทางพันธุกรรมที่ไม่ทราบนัยยะสำคัญ (VUS) ยังคงไม่มีข้อมูลอธิบายชัดเจน

คณะศิลปศาสตร์
"Niyom Thai" represents health-centric footwear adorned with traditional Thai patterns, embodying an innovative approach to sustainable development tailored to the current needs of local communities. These shoes utilize natural materials to mitigate fatigue and integrate safety technologies, including location tracking via a mobile application and heart rate monitoring. This addresses the aspects of convenience and well-being in both daily life and travel

วิทยาเขตชุมพรเขตรอุดมศักดิ์
Durian is an important economic crop in Thailand that is affected by foliar diseases such as rust, leaf blight, and leaf spot. These diseases reduce the quality of the yield and increase management costs. This research focuses on developing AI software for screening durian leaf diseases by applying deep learning technology to classify different types of leaf lesions.

คณะวิศวกรรมศาสตร์
The project uses artificial intelligence (AI) and deep learning to develop a smart police system (Smart Police) to analyze the identity of individuals and vehicles suspected of involvement in crimes. The system uses CCTV cameras to detect people with concealed weapons and track vehicles involved in crimes. The system also sends alerts to the police when a crime is detected. The Smart Police system is a collaboration between the Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, the Provincial Police Region 2, the Chachoengsao Foundation for Development, and the Smart City Office of Chachoengsao Province. The system is designed to prevent and deter crime, increase public safety and order, and build a network of cooperation between the government, the private sector, and the community. The system is currently under development, but it has the potential to be a valuable tool for law enforcement. The system could help to reduce crime and improve public safety in Chachoengsao Province and other parts of Thailand.