KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

Automated Hydroponic System for Home Use

Abstract

An automated hydroponic system for household use has been developed to cater to individuals with limited space who wish to conveniently and easily grow their own salad greens at home. This system is designed to automatically control nutrient delivery by setting appropriate electrical conductivity (EC) and pH levels tailored to the specific salad greens being grown. It includes artificial lighting to enable cultivation in confined spaces with insufficient sunlight and is more cost-effective than similar systems available on the market. System testing revealed that the automated control of EC and pH values performed effectively, achieving the preset levels within 30 minutes and maintaining them consistently throughout operation. In an experiment growing green oak lettuce using a simulated balcony setup, the plants demonstrated a higher growth rate compared to conventional methods, particularly when artificial lighting was used.

Objective

ในการปลูกผักไร้ดินหรือไฮโดรโปนิกส์ (Hydroponics) เกิดขึ้นจากความพยายามของนักวิทยาศาสตร์ในช่วงทศวรรษ 1930 ที่ต้องการหาวิธีการปลูกพืชโดยไม่ต้องใช้ดิน ซึ่งเหมาะกับการปลูกพืชในพื้นที่จำกัดหรือในเขตที่ขาดแคลนดินเพาะปลูก การค้นคว้าในเรื่องนี้พบว่าพืชต้องการธาตุอาหารที่ละลายในน้ำเพื่อเจริญเติบโตได้ดีและสามารถควบคุมคุณภาพของสารอาหารได้อย่างมีประสิทธิภาพ ในยุคปัจจุบัน การปลูกผักไร้ดินได้รับความนิยมมากขึ้น เนื่องจากสามารถใช้พื้นที่เพาะปลูกอย่างมีประสิทธิภาพ เช่น การปลูกในอาคารหรือพื้นที่เมืองที่จำกัด ลดปริมาณการใช้น้ำด้วยการหมุนเวียนน้ำกลับมาใช้ซ้ำ อีกทั้งยังช่วยเพิ่มความปลอดภัยด้านอาหาร เนื่องจากลดความเสี่ยงจากการปนเปื้อนของโรคพืชและแมลงที่อยู่ในดิน การปลูกผักไร้ดินยังสามารถให้ผลผลิตได้ตลอดทั้งปี ไม่ขึ้นกับฤดูกาล ช่วยสนับสนุนความมั่นคงทางอาหารในเมืองใหญ่และสอดคล้องกับแนวคิดการเกษตรยั่งยืน เพื่อให้การปลูกผักสลัดเป็นเรื่องที่ง่ายขึ้นและลดอุปสรรคในการจัดการการใส่ปุ๋ยให้เหมาะสม ผู้ศึกษาได้สนใจที่จะพัฒนาระบบไฮโดรโปนิกส์แบบควบคุมอัตโนมัติสำหรับใช้ในครัวเรือนที่สามารถทำงานได้ด้วยตัวเองเพื่อสนับสนุนผู้ปลูกที่เริ่มต้นใหม่หรือผู้ที่ขาดประสบการณ์ด้านการเกษตรระบบที่พัฒนาขึ้นนี้ถูกออกแบบมาเพื่อลดความซับซ้อนในการคำนวณปริมาณปุ๋ยที่เหมาะสมรวมถึงการเติมปุ๋ยในเวลาที่เหมาะสม นอกจากช่วยประหยัดเวลาและแรงงานแล้วระบบนี้ยังมีความสามารถในการปรับปริมาณปุ๋ยให้สอดคล้องกับการเจริญเติบโตของผักสลัดในแต่ละช่วง ส่งผลให้ผู้ปลูกผักสลัดสามารถมั่นใจได้ว่าผักจะได้รับสารอาหารที่จำเป็นอย่างครบถ้วน ทำให้ผลผลิตมีคุณภาพสูงและมีโอกาสสำเร็จในการปลูกมากขึ้น

Other Innovations

OPTIMIZATION OF CONCENTRATED BUTTERFLY PEA EXTRACT PROCESS

คณะวิศวกรรมศาสตร์

OPTIMIZATION OF CONCENTRATED BUTTERFLY PEA EXTRACT PROCESS

This thesis project was conducted to identify the optimal conditions for producing concentrated butterfly pea juice using vacuum evaporation to preserve key compounds in butterfly pea flowers, such as anthocyanins—natural pigments with high antioxidant properties. The study applies a Box-Behnken Design, a statistical method that facilitates analysis of multiple factors. The research focuses on the ratio of dried butterfly pea flowers to water, extraction temperature, and evaporation temperature, each of which has a direct effect on the preservation of key compounds, color, aroma, and flavor. The results indicate that using a dried flower-to-water ratio of 1:15, an extraction temperature of 60°C, and an evaporation temperature of 40°C under low pressure can minimize the loss of essential compounds and best retain the properties of the concentrated butterfly pea juice. Findings from this research provide a foundation for developing an industrial production process for concentrated butterfly pea juice and enhance the potential for creating new products from butterfly pea flowers.

Read more
Comparison of greenhouse system optimum to potted petunia production

คณะเทคโนโลยีการเกษตร

Comparison of greenhouse system optimum to potted petunia production

-

Read more
Aspect-Based Sentiment Analysis for E-Commerce Product Reviews

คณะวิทยาศาสตร์

Aspect-Based Sentiment Analysis for E-Commerce Product Reviews

In today’s rapidly expanding e-commerce environment, the massive volume of product reviews makes it crucial to summarize user opinions in a way that is both comprehensible and practically applicable. This research presents a system for analyzing product reviews using Aspect-Based Sentiment Analysis (ABSA), a Natural Language Processing (NLP) technique that identifies key aspects of a review (such as shipping, product quality, and packaging) and evaluates the sentiment (positive, negative, or neutral) associated with each aspect, allowing both consumers and merchants to gain more efficient access to in-depth insights. This project focuses on developing AI for Thai-language ABSA by utilizing WangchanBERTa, a model trained on Thai data, and comparing it with various standard approaches such as TF-IDF + Logistic Regression, Word2Vec + BiLSTM, and Multilingual BERT (mBERT/XLM-R) to assess their performance in terms of accuracy, speed, and resource usage. Additionally, a dashboard visualization is provided to help users quickly grasp review trends. The expected outcome is to create an AI tool that can be practically employed in the e-commerce industry, enabling consumers to make easier purchasing decisions and assisting merchants in effectively improving their products and services.

Read more