Air Rack is a product designed to address businesses with limited space and budget constraints for server rooms, cooling systems, and noise management. This system enables efficient use of IT equipment in open spaces, supporting both On-premise and On-cloud operations. It converts sensor data into digital information and displays it via a Dashboard, allowing users to monitor, analyze, and control the system remotely. Additionally, Air Rack significantly reduces power consumption and the costs associated with traditional server room management.
Air Rack เป็นผลิตภัณฑ์ที่ออกแบบมาเพื่อธุรกิจจำนวนมากไม่มีพื้นที่ หรืองบประมาณในการสร้างห้องเซริฟ์เวอร์, ระบบระบายความร้อน และการจัดการเสียงรบกวน ซึ่งเป็นผลมาจากการนำอุปกรณ์ไอทีออกมาในที่โล่ง ใช้งานรวมกับระบบแสดงผลและเก็บข้อมูลแบบออนไลน์ ระบบถูกออกแบบมาให้ทำหน้าที่เป็นเครื่องมือที่สามารถเก็บข้อมูลได้อย่างละเอียดและแม่นยำ ทั้งแบบ On-premise และ On Cloud ก่อนจะประมวลผลโดยแปลงสัญญาณจากเซ็นเซอร์ให้เป็นข้อมูลดิจิตอล เพื่อส่งตรงสู่หน้าจอคอมพิวเตอร์ในรูปแบบของ Dashboard ที่ประกอบไปด้วยแผนภูมิ (Charts) เกจ (Gauges) LEDs ตาราง และอื่นๆ ให้คุณสามารถควบคุมกระบวนการ ติดตาม ตรวจสอบ วิเคราะห์ และสั่งงานได้จากระยะไกล
คณะเทคโนโลยีการเกษตร
Climate change affects agricultural systems worldwide, including Thailand, and may lead to reduced crop yields, impacting food security. Bambara groundnut is a crop with the potential to adapt to changing environments and can thrive in areas with limited resources. This research aims to study the impact of climate change on Bambara groundnut yields in Thailand using the DSSAT (Decision Support System for Agrotechnology Transfer) model, an important tool for predicting plant growth under various environmental conditions. This study utilizes climate data, soil composition, and genetic information of Bambara groundnut to simulate and analyze yield trends under future climate scenarios. Four study areas in Thailand were selected: Songkhla, Lampang, Yasothon, and Saraburi. The CSM-CROPGRO-Bambara groundnut model was used to assess the impact of changing temperature and rainfall on the growth and yield of Bambara groundnut. The results of this study are expected to provide farmers and researchers with valuable information for planning cultivation and managing peanut production in response to climate change. Additionally, the findings can help formulate policy guidelines to promote the cultivation of climate-resilient crops and support the country's food security.
คณะเทคโนโลยีสารสนเทศ
This research presents a deep learning method for generating automatic captions from the segmentation of car part damage. It analyzes car images using a Unified Framework to accurately and quickly identify and describe the damage. The development is based on the research "GRiT: A Generative Region-to-text Transformer for Object Understanding," which has been adapted for car image analysis. The improvement aims to make the model generate precise descriptions for different areas of the car, from damaged parts to identifying various components. The researchers focuses on developing deep learning techniques for automatic caption generation and damage segmentation in car damage analysis. The aim is to enable precise identification and description of damages on vehicles, there by increasing speed and reducing the work load of experts in damage assessment. Traditionally, damage assessment relies solely on expert evaluations, which are costly and time-consuming. To address this issue, we propose utilizing data generation for training, automatic caption creation, and damage segmentation using an integrated framework. The researchers created a new dataset from CarDD, which is specifically designed for cardamage detection. This dataset includes labeled damages on vehicles, and the researchers have used it to feed into models for segmenting car parts and accurately labeling each part and damage category. Preliminary results from the model demonstrate its capability in automatic caption generation and damage segmentation for car damage analysis to be satisfactory. With these results, the model serves as an essential foundation for future development. This advancement aims not only to enhance performance in damage segmentation and caption generation but also to improve the model’s adaptability to a diversity of damages occurring on various surfaces and parts of vehicles. This will allow the system to be applied more broadly to different vehicle types and conditions of damage inthe future
คณะสถาปัตยกรรม ศิลปะและการออกแบบ
-