
This project aims to study the load transfer in timber building structures by analyzing weight distribution across key structural components such as beams, columns, and floors, as well as the load-bearing behavior of wood under different conditions. The research incorporates structural calculations and modeling to examine load transfer patterns. Additionally, it enhances skills in design, analysis, and teamwork, providing practical knowledge applicable to real-world construction projects.
การออกแบบอาคารสถาปัตยกรรม ต้องเข้าใจในส่วนของโครงสร้างของตัวอาคาร จึงเริ่มจากโครงสร้างขั้นพื้นฐานที่เป็นอาคารโครงสร้างไม้ก่อน

คณะวิทยาศาสตร์
Recruitment is a crucial process that enables organizations to select candidates whose qualifications match the requirements of a given position. However, this process often faces challenges related to data management, delays, and human bias. This research aims to design and develop an intelligent web application for employee recruitment using artificial intelligence (AI) technology to evaluate and score candidates' suitability for job positions. The system leverages data analysis techniques on resumes and a qualification-matching process based on predefined criteria. Developed using Agile principles, the system employs Natural Language Processing (NLP) to analyze resumes, assess candidates’ qualifications, skills, and experience, and utilizes Machine Learning to predict and rank suitability. The system consolidates data from multiple sources into a unified database to reduce redundancy and input errors. Additionally, it presents insights through a dashboard, enabling HR teams to make more effective hiring decisions.

คณะแพทยศาสตร์
Background: The RGL3 gene plays a role in key signal transduction pathways and has been implicated in hypertension risk through the identification of a copy number variant deletion in exon 6. Genome-wide association studies have highlighted RGL3 as associated with hypertension, providing insights into the genetic underpinnings of the condition and its protective effects on cardiovascular health. Despite these findings, there is a lack of data that confirms the precise role of RGL3 in hypertension. Additionally, the functional impact of certain variants, particularly those classified as variants of uncertain significance, remains poorly understood. Objectives: This study aims to analyze alterations in the RGL3 protein structure caused by mutations and validate the location of the ligand binding sites. Methods: Clinical variants of the RGL3 gene were obtained from NCBI ClinVar. Variants of uncertain significance and likely benign were analyzed. Multiple sequence alignment was conducted using BioEdit v7.7.1. AlphaFold 2 predicted the wild-type and mutant 3D structures, followed by quality assessment via PROCHECK. Functional domain analysis of RasGEF, RASGEF_NTER, and RA domains was performed, and BIOVIA Discovery Studio Visualizer 2024 was used to evaluate structural and physicochemical changes. Results: The analysis of 81 RGL3 variants identified 5 likely benign and 76 variants of uncertain significance (VUS), all of which were missense mutations. Structural modeling using AlphaFold 2 revealed three key domains: RasGEF_NTER, RasGEF, and RA, where mutations induced conformational changes. Ramachandran plot validation confirmed 79.7% of residues in favored regions, indicating an overall reliable structure. Moreover, mutations within RasGEF and RA domains altered polarity, charge, and stability, suggesting potential functional disruptions. These findings provide insight into the structural consequences of RGL3 mutations, contributing to further functional assessments. Discussion & Conclusion: The identified RGL3 mutations induced physicochemical alterations in key domains, affecting charge, polarity, hydrophobicity, and flexibility. These changes likely disrupt interactions with Ras-like GTPases, impairing GDP-GTP exchange and cellular signaling. Structural analysis highlighted mutations in RasGEF and RA domains that may interfere with activation states, potentially affecting protein function and stability. These findings suggest that mutations in RGL3 could have functional consequences, emphasizing the need for further molecular and functional studies to explore their pathogenic potential.

คณะอุตสาหกรรมอาหาร
Coffee is a critical agricultural commodity to be used to produce a premium beverage to serve people worldwide. Coffee microbiome turned to be an essential tool to improve the bean quality through the natural fermentation. Therefore, understanding the microbial diversities could create the final product's better quality. This study investigated the natural microbial consortium during the wet process fermentation of coffee onsite in Thailand to characterize the microorganisms involved in correlation toward the biochemical characteristics and metabolic attributes. Roasting is another important step in developing the complex flavor/ aroma that make coffee to be enjoyable. During the roasting process, the beans undergo many complex and alternatively change in the physicochemical properties from the gained substances in the fermentation process. The changing in the formation of the substances responsible for the sensory qualities, physicochemical/ aroma attributes as well as the health benefits of the final product. Using the starter culture could also develop the distinguished characteristics of coffee (Research collaboration with Van Hart company)