-
-
คณะบริหารธุรกิจ
BrushXchange is a toothbrush brand dedicated to reducing plastic waste in Thailand by offering toothbrushes made from recycled plastic with replaceable bristles. These products help minimize waste generated by traditional toothbrushes. The design is modern and user-friendly, emphasizing durability, comfort, and affordability, making it appropriate for health-conscious and environmentally aware consumers. The brand aims to drive change in the oral care industry by providing high-quality products at accessible prices. Its marketing strategy focuses on using social media platforms like Instagram and TikTok and collaborating with organizations that promote sustainability. The product is distributed through retail stores such as Lotus’s and Tops. BrushXchange also prioritizes environmental responsibility by using recycled paper packaging and organizing sustainability campaigns. The brand's long-term goal is to become a widely recognized brand image in the eco-friendly toothbrush market in Thailand while encouraging sustainable living habits within society.
คณะวิทยาศาสตร์
With the development of space technology, wide-field sky surveys using telescopes have expanded the range of new data available for time-domain astronomical research. Traditional data analysis methods can no longer respond quickly and accurately enough to the growing volume of data. Thus, classifying time-series data, such as light curves, has become a significant challenge in the era of big data. In modern times, analyzing light curves has become essential for using machine learning techniques to handle and filter through massive amounts of data. Machine learning algorithms can be divided into two categories: shallow learning and deep learning. Numerous researchers have proposed and developed a variety of algorithms for light curve classification. In this study, we experimented with Support Vector Machine (SVM) and XGBoost, which are shallow machine learning algorithms, as well as 1D-CNN and Long Short-Term Memory (LSTM), which are deep learning algorithms, which are branches of deep machine learning, to classify variable stars. The training and testing data used in this study were from the Optical Gravitational Lensing Experiment-III (OGLE-III), consisting of variable star data from the Large Magellanic Cloud (LMC), categorized into five main classes: Classical Cepheids, δ Scutis, eclipsing binaries, RR Lyrae stars, and Long-period variables. The results demonstrate the performance analysis of each machine learning algorithm type applied to light curve data, while also highlighting the accuracy and statistical metrics of the algorithms used in the experiments.
วิทยาเขตชุมพรเขตรอุดมศักดิ์
This project focuses on developing a work tracking system for team members. Python is used to extract data from Excel files and import it into a SQL Server database for systematic data management. The system includes a function to notify task status via LINE and displays reports via Power BI, allowing supervisors to track progress and evaluate team members' performance efficiently. Additionally, the system helps promote work and time management skills for team members.