KMITL Innovation Expo 2025 Logo

Unpolished Rice Yogurt with Trio Probiotic Popping Pearls and Healthy Rice Cereal

Unpolished Rice Yogurt with Trio Probiotic Popping Pearls and Healthy Rice Cereal

Abstract

This black rice yogurt combines Trio Probiotic popping pearls and healthy rice cereal, rich in anthocyanins that help slow down bodily aging. It contains 3 types of probiotics to support gut balance and enhance digestive efficiency. This zero-waste product repurposes rice residue from the production process into nutritious cereal, offering a delicious and health-packed experience in one cup.

Objective

1.เนื่องจากในปัจจุบันมีผู้ที่แพ้น้ำตาลแลคโตสเป็นจำนวนมาก และด้วยกระแสของอาหาร plant based ทุกคนเริ่มหันมาให้ความสนใจ พวกเราจึงมีแนวคิดที่จะทำผลิตภัณฑ์โยเกิร์ต plant based จากข้าวหักที่ไม่ผ่านการขัดสี(ข้าวก่ำ และข้าวหอมนิล) ซึ่งเป็นการช่วยสร้างมูลค่าเพิ่มให้กับข้าวหัก ที่มีราคาต่ำ ช่วยเพิ่มรายได้ให้กับเกษตรกรไทย 2.อีกทั้งยังมี Pop Trio Probiotic มาในรูปแบบ Spheres ซึ่งมีเชื้อจุลินทรีย์ Probiotics ถึง 3 ชนิด โดยจะทำงานทั้งในลำไส้เล็กและลำไส้ใหญ่ ซึ่งความพิเศษ คือ การใช้ Encapsulation Technique ในการบรรจุ เชื้อจุลินทรีย์ Probiotics ถึง 3 ชนิด เพื่อยืดอายุ และปกป้องเชื้อจุลินทรีย์ 3.สุดท้ายนี้ ผลิตภัณฑ์ Yo Fran’s มีการนำ Byproduct จากกระบวนการผลิต มาใช้ประโยชน์อย่างคุ้มค่า ซึ่งคือ ซีเรียลข้าวกรุบกรอบ นั่นเอง

Other Innovations

Lucky Lakshmi

คณะสถาปัตยกรรม ศิลปะและการออกแบบ

Lucky Lakshmi

Here, We Luckier in Love Everyday". Introducing you a Lakshmi 2025 Edition. Amidst the buzz of the mall, take charge of your love destiny—because fate is so last season.

Read more
A smart child manikin for CPR training

วิทยาลัยนวัตกรรมการผลิตขั้นสูง

A smart child manikin for CPR training

A child manikin for Cardiopulmonary Resuscitation (CPR) training includes the trachea mechanism, neck mechanism, lung mechanism, heart pump mechanism, artificial skin, and sensor system. All components work together to function similar to a real child. It can be used to practice heart pumping and resuscitation. The manikin has been designed and verified by resuscitation experts. It has a system to evaluate the accuracy of the training and display the results on the computer for real-time monitoring.

Read more
A Unified Framework for Automated Captioning and Damage Segmentation in Car Damage Analysis

คณะเทคโนโลยีสารสนเทศ

A Unified Framework for Automated Captioning and Damage Segmentation in Car Damage Analysis

This research presents a deep learning method for generating automatic captions from the segmentation of car part damage. It analyzes car images using a Unified Framework to accurately and quickly identify and describe the damage. The development is based on the research "GRiT: A Generative Region-to-text Transformer for Object Understanding," which has been adapted for car image analysis. The improvement aims to make the model generate precise descriptions for different areas of the car, from damaged parts to identifying various components. The researchers focuses on developing deep learning techniques for automatic caption generation and damage segmentation in car damage analysis. The aim is to enable precise identification and description of damages on vehicles, there by increasing speed and reducing the work load of experts in damage assessment. Traditionally, damage assessment relies solely on expert evaluations, which are costly and time-consuming. To address this issue, we propose utilizing data generation for training, automatic caption creation, and damage segmentation using an integrated framework. The researchers created a new dataset from CarDD, which is specifically designed for cardamage detection. This dataset includes labeled damages on vehicles, and the researchers have used it to feed into models for segmenting car parts and accurately labeling each part and damage category. Preliminary results from the model demonstrate its capability in automatic caption generation and damage segmentation for car damage analysis to be satisfactory. With these results, the model serves as an essential foundation for future development. This advancement aims not only to enhance performance in damage segmentation and caption generation but also to improve the model’s adaptability to a diversity of damages occurring on various surfaces and parts of vehicles. This will allow the system to be applied more broadly to different vehicle types and conditions of damage inthe future

Read more