Currently, lithium batteries are widely used in electronic devices and electric vehicles, making the estimation of their State of Health (SOH) crucial. Accurate SOH estimation helps extend battery lifespan, reduce maintenance costs, and prevent safety issues such as overheating or explosions. This project aims to study and analyze mathematical models of batteries and develop SOH estimation techniques using Neural Networks to enhance accuracy and evaluation speed. The experiment involved collecting charge and discharge data from three lithium battery cells under controlled temperature conditions while maintaining a constant current. The current, voltage, and time data were recorded and analyzed to determine the battery capacity for each cycle. These data were then used to train a Neural Network model. The results demonstrated an effective method for predicting battery health status. The outcomes of this project can contribute to the development of a Battery Management System (BMS) that improves battery efficiency and longevity. Additionally, it provides a foundation for applying artificial intelligence techniques in the energy sector effectively.
เนื่องจากปัจจุบันมีการใช้งานแบตเตอรี่ลิเทียมในอุปกรณ์อิเล็กทรอนิกส์ เช่น โทรศัพท์มือถือ และยานยนต์ไฟฟ้าอย่างแพร่หลาย การประเมินสถานะสุขภาพของแบตเตอรี่จึงเป็นสิ่งสำคัญที่ช่วยยืดอายุการใช้งาน ลดค่าใช้จ่ายในการบำรุงรักษา และป้องกันการเสื่อมสภาพที่อาจนำไปสู่ปัญหาด้านความปลอดภัย เช่น ความร้อนสูงเกินหรือการระเบิด ทำให้การประมาณสถานะสุขภาพมีส่วนช่วยลดความเสี่ยงในการใช้งานแบตเตอรี่และเพิ่มประสิทธิภาพในการใช้พลังงานให้เกิดประโยชน์สูงสุด อีกทั้งการประเมินสถานะสุขภาพนี้ยังช่วยลดต้นทุนการเปลี่ยนแบตเตอรี่บ่อยครั้งที่อาจเกิดขึ้นจากการใช้งานที่ไม่ถูกต้อง ปัญหาของการเสื่อมสภาพของแบตเตอรี่เกิดขึ้นจากการใช้งานที่ต่อเนื่อง ทั้งการประจุไฟฟ้าและการคายประจุไฟฟ้า ซึ่งจะมีผลให้ความเสถียรของแบตเตอรี่ลดลงไปเรื่อยๆ การตรวจสอบสถานะสุขภาพแบตเตอรี่เป็นการแก้ปัญหาหนึ่ง แต่เทคนิคที่มีอยู่เดิมอาจใช้เวลานานหรือมีความแม่นยำที่ไม่เพียงพอ การนำเทคโนโลยีปัญญาประดิษฐ์ โดยเฉพาะโครงข่ายประสาทเทียม (Neural Networks) เข้ามาประยุกต์ใช้จึงเป็นทางเลือกใหม่ที่ช่วยให้การประเมินสถานะสุขภาพแม่นยำขึ้นและรวดเร็วขึ้น การพัฒนาอัลกอริทึมสำหรับการคาดการณ์จากข้อมูลการประจุไฟฟ้าและการคายประจุไฟฟ้าของแบตเตอรี่ช่วยให้เกิดโมเดลที่สามารถเรียนรู้จากข้อมูลในอดีตและคาดการณ์สถานะสุขภาพของแบตเตอรี่ในอนาคตได้
คณะวิทยาศาสตร์
A smartphone-based colorimetric sensor for quantitative detection of pyridoxine (Vitamin B6, VB-6) in functional drink samples has been realized by developing double layer hydrogel. Electrostatic interaction initiates the cross-linking and produces double layer hydrogel.
คณะวิศวกรรมศาสตร์
Telemedicine App is a prototype system that provides basic functions for communicating diagnosis between patients, nurses, and doctors via video conferencing. The system is contains different diagnostic room and it allows recording patient information. It is an open source for others to extend for further development.
คณะบริหารธุรกิจ
This research aimed to develop the mixed tea from longan peels and seeds. Population studied were longan farmers who planted longan and preserved the longan product in Ampur Wang Nam Yen, Sa Kaeo Province. From the results, it was found that from By-product in the production of dehydrated longan, longan peels and seeds, which can be processed into ready-to-drink powdered tea. This not only helps reduce waste from the production process but also contributes to generating additional income from these by-products.