KMITL Innovation Expo 2025 Logo

SOH Estimation for Li-ion battery

SOH  Estimation for  Li-ion battery

Abstract

Currently, lithium batteries are widely used in electronic devices and electric vehicles, making the estimation of their State of Health (SOH) crucial. Accurate SOH estimation helps extend battery lifespan, reduce maintenance costs, and prevent safety issues such as overheating or explosions. This project aims to study and analyze mathematical models of batteries and develop SOH estimation techniques using Neural Networks to enhance accuracy and evaluation speed. The experiment involved collecting charge and discharge data from three lithium battery cells under controlled temperature conditions while maintaining a constant current. The current, voltage, and time data were recorded and analyzed to determine the battery capacity for each cycle. These data were then used to train a Neural Network model. The results demonstrated an effective method for predicting battery health status. The outcomes of this project can contribute to the development of a Battery Management System (BMS) that improves battery efficiency and longevity. Additionally, it provides a foundation for applying artificial intelligence techniques in the energy sector effectively.

Objective

เนื่องจากปัจจุบันมีการใช้งานแบตเตอรี่ลิเทียมในอุปกรณ์อิเล็กทรอนิกส์ เช่น โทรศัพท์มือถือ และยานยนต์ไฟฟ้าอย่างแพร่หลาย การประเมินสถานะสุขภาพของแบตเตอรี่จึงเป็นสิ่งสำคัญที่ช่วยยืดอายุการใช้งาน ลดค่าใช้จ่ายในการบำรุงรักษา และป้องกันการเสื่อมสภาพที่อาจนำไปสู่ปัญหาด้านความปลอดภัย เช่น ความร้อนสูงเกินหรือการระเบิด ทำให้การประมาณสถานะสุขภาพมีส่วนช่วยลดความเสี่ยงในการใช้งานแบตเตอรี่และเพิ่มประสิทธิภาพในการใช้พลังงานให้เกิดประโยชน์สูงสุด อีกทั้งการประเมินสถานะสุขภาพนี้ยังช่วยลดต้นทุนการเปลี่ยนแบตเตอรี่บ่อยครั้งที่อาจเกิดขึ้นจากการใช้งานที่ไม่ถูกต้อง ปัญหาของการเสื่อมสภาพของแบตเตอรี่เกิดขึ้นจากการใช้งานที่ต่อเนื่อง ทั้งการประจุไฟฟ้าและการคายประจุไฟฟ้า ซึ่งจะมีผลให้ความเสถียรของแบตเตอรี่ลดลงไปเรื่อยๆ การตรวจสอบสถานะสุขภาพแบตเตอรี่เป็นการแก้ปัญหาหนึ่ง แต่เทคนิคที่มีอยู่เดิมอาจใช้เวลานานหรือมีความแม่นยำที่ไม่เพียงพอ การนำเทคโนโลยีปัญญาประดิษฐ์ โดยเฉพาะโครงข่ายประสาทเทียม (Neural Networks) เข้ามาประยุกต์ใช้จึงเป็นทางเลือกใหม่ที่ช่วยให้การประเมินสถานะสุขภาพแม่นยำขึ้นและรวดเร็วขึ้น การพัฒนาอัลกอริทึมสำหรับการคาดการณ์จากข้อมูลการประจุไฟฟ้าและการคายประจุไฟฟ้าของแบตเตอรี่ช่วยให้เกิดโมเดลที่สามารถเรียนรู้จากข้อมูลในอดีตและคาดการณ์สถานะสุขภาพของแบตเตอรี่ในอนาคตได้

Other Innovations

Air Quality Index Prediction Using Ensemble Machine Learning Methods

คณะวิทยาศาสตร์

Air Quality Index Prediction Using Ensemble Machine Learning Methods

This special problem aims to study and compare the performance of predicting the air quality index (AQI) using five ensemble machine learning methods: random forest, XGBoost, CatBoost, stacking ensemble of random forest and XGBoost, and stacking ensemble of random forest, SVR, and MLP. The study uses a dataset from the Central Pollution Control Board of India (CPCB), which includes fifteen pollutants and nine meteorological variables collected between January, 2021 and December, 2023. In this study, there were 1,024,920 records. The performance is measured using three methods: root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination. The study found that the random forest and XGBoost stacking ensemble had the best performance measures among the three methods, with the minimum RMSE of 0.1040, the minimum MAE of 0.0675, and the maximum of 0.8128. SHAP-based model interpretation method for five machine learning methods. All methods reached the same conclusion: the two variables that most significantly impacted the global prediction were PM2.5 and PM10, respectively.

Read more
BrushXchange; A toothbrush featuring a recycled plastic handle and a replaceable brush head.

คณะบริหารธุรกิจ

BrushXchange; A toothbrush featuring a recycled plastic handle and a replaceable brush head.

BrushXchange is a toothbrush brand dedicated to reducing plastic waste in Thailand by offering toothbrushes made from recycled plastic with replaceable bristles. These products help minimize waste generated by traditional toothbrushes. The design is modern and user-friendly, emphasizing durability, comfort, and affordability, making it appropriate for health-conscious and environmentally aware consumers. The brand aims to drive change in the oral care industry by providing high-quality products at accessible prices. Its marketing strategy focuses on using social media platforms like Instagram and TikTok and collaborating with organizations that promote sustainability. The product is distributed through retail stores such as Lotus’s and Tops. BrushXchange also prioritizes environmental responsibility by using recycled paper packaging and organizing sustainability campaigns. The brand's long-term goal is to become a widely recognized brand image in the eco-friendly toothbrush market in Thailand while encouraging sustainable living habits within society.

Read more
Eco-Smart Noise and Vibration Absorption Block for Railway

คณะวิศวกรรมศาสตร์

Eco-Smart Noise and Vibration Absorption Block for Railway

Nowadays, rail transportation has a significant impact on people's lives and economic growth. Consequently, the number of rail systems being built around our country has dramatically increased. This process causes various types of pollution, such as noise and rail-way vibration, which can badly affect the life of citizens who live nearby. The most popular way to solve this problem recently is to decrease the noise from the sound source or to adjust the vibration by attaching a Track Damper to the railway. This technique is being used in many countries especially in Europe and Australia because it is cheap and has high efficiency. The key piece called Track Dampers are made by AUT company’s Thailand for a period of time. The company produces Track Dampers for the owner of the technology so as to sell more than 300,000 pieces of it overseas. Furthermore, the demand of Track Dampers grows as the railway systems expand. Unfortunately, the imported synthetic materials, which are used to create Track Dampers, are made from environmentally unfriendly sources. As a result, this research aims to develop the product to be environmentally-safe by replacing some imported materials with Thai’s local content; which are natural rubber and rubber crumbs. Furthermore, the product will be added value by mounting with embedded sensors for real-time monitoring of track vibration, noise, and rail temperature. All embedded devices developed will sense, collect, and automatically send to cloud by wireless technology platform. The AI and IOT platform will also be developed for safety, security, and maintenance proposed of railway track system. However, in conducting research, there will be close collaboration with AUT company through design, production, and testing. The outcome of this research is to upgrade AUT company from tier 2 manufacturer (TRL 8-9) to tier 1 manufacturer (TRL 7-8) which will be served the Thailand competitiveness enhancing strategic goal.

Read more