KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

SOH Estimation for Li-ion battery

SOH  Estimation for  Li-ion battery

Abstract

Currently, lithium batteries are widely used in electronic devices and electric vehicles, making the estimation of their State of Health (SOH) crucial. Accurate SOH estimation helps extend battery lifespan, reduce maintenance costs, and prevent safety issues such as overheating or explosions. This project aims to study and analyze mathematical models of batteries and develop SOH estimation techniques using Neural Networks to enhance accuracy and evaluation speed. The experiment involved collecting charge and discharge data from three lithium battery cells under controlled temperature conditions while maintaining a constant current. The current, voltage, and time data were recorded and analyzed to determine the battery capacity for each cycle. These data were then used to train a Neural Network model. The results demonstrated an effective method for predicting battery health status. The outcomes of this project can contribute to the development of a Battery Management System (BMS) that improves battery efficiency and longevity. Additionally, it provides a foundation for applying artificial intelligence techniques in the energy sector effectively.

Objective

เนื่องจากปัจจุบันมีการใช้งานแบตเตอรี่ลิเทียมในอุปกรณ์อิเล็กทรอนิกส์ เช่น โทรศัพท์มือถือ และยานยนต์ไฟฟ้าอย่างแพร่หลาย การประเมินสถานะสุขภาพของแบตเตอรี่จึงเป็นสิ่งสำคัญที่ช่วยยืดอายุการใช้งาน ลดค่าใช้จ่ายในการบำรุงรักษา และป้องกันการเสื่อมสภาพที่อาจนำไปสู่ปัญหาด้านความปลอดภัย เช่น ความร้อนสูงเกินหรือการระเบิด ทำให้การประมาณสถานะสุขภาพมีส่วนช่วยลดความเสี่ยงในการใช้งานแบตเตอรี่และเพิ่มประสิทธิภาพในการใช้พลังงานให้เกิดประโยชน์สูงสุด อีกทั้งการประเมินสถานะสุขภาพนี้ยังช่วยลดต้นทุนการเปลี่ยนแบตเตอรี่บ่อยครั้งที่อาจเกิดขึ้นจากการใช้งานที่ไม่ถูกต้อง ปัญหาของการเสื่อมสภาพของแบตเตอรี่เกิดขึ้นจากการใช้งานที่ต่อเนื่อง ทั้งการประจุไฟฟ้าและการคายประจุไฟฟ้า ซึ่งจะมีผลให้ความเสถียรของแบตเตอรี่ลดลงไปเรื่อยๆ การตรวจสอบสถานะสุขภาพแบตเตอรี่เป็นการแก้ปัญหาหนึ่ง แต่เทคนิคที่มีอยู่เดิมอาจใช้เวลานานหรือมีความแม่นยำที่ไม่เพียงพอ การนำเทคโนโลยีปัญญาประดิษฐ์ โดยเฉพาะโครงข่ายประสาทเทียม (Neural Networks) เข้ามาประยุกต์ใช้จึงเป็นทางเลือกใหม่ที่ช่วยให้การประเมินสถานะสุขภาพแม่นยำขึ้นและรวดเร็วขึ้น การพัฒนาอัลกอริทึมสำหรับการคาดการณ์จากข้อมูลการประจุไฟฟ้าและการคายประจุไฟฟ้าของแบตเตอรี่ช่วยให้เกิดโมเดลที่สามารถเรียนรู้จากข้อมูลในอดีตและคาดการณ์สถานะสุขภาพของแบตเตอรี่ในอนาคตได้

Other Innovations

Ginbanirose

คณะอุตสาหกรรมอาหาร

Ginbanirose

The Ginbanirose project aims to develop herbal extracts for alleviating menstrual pain using key ingredients: roselle, banana inflorescence, and ginger. These ingredients contain bioactive compounds with anti-inflammatory, antioxidant, and pain-relieving properties. The extracts are enhanced through liposome encapsulation technology, which improves absorption and stability. The production process involves herbal extraction, freeze-drying, and liposome formulation using lecithin and stabilizers. Experimental results demonstrate high phenolic content and antioxidant activity via the DPPH method. Ginbanirose addresses women’s quality of life concerns while offering significant business opportunities in the rapidly growing herbal market, particularly in the Asia-Pacific region.

Read more
Herby gel

คณะศิลปศาสตร์

Herby gel

The Herby gel are products developed to relieve stress and headaches, which often result from heavy work, a fast-paced lifestyle, or hot and humid weather. The patches are made from natural ingredients such as peppermint, neem leaves, gotu kola, aloe vera, and other herbs that effectively alleviate these symptoms. Free from alcohol, this product is safe to use and provides a cooling, soothing, and refreshing effect on the skin. It is easy to use, convenient to carry, and suitable for use in any situation, making it a practical solution for everyday discomfort.

Read more
Automatic Temperature and Humidity Control System for Small- Scale Household Oyster Mushroom Cultivation Houses

คณะเทคโนโลยีการเกษตร

Automatic Temperature and Humidity Control System for Small- Scale Household Oyster Mushroom Cultivation Houses

In the present day, interest in health and the consumption of chemical-free food has been steadily increasing, particularly in homegrown produce such as Phoenix oyster mushrooms (Pleurotus pulmonarius), which are highly nutritious and suitable for weight control. However, small-scale mushroom cultivation often faces challenges related to unsuitable environmental conditions, such as unstable temperature and humidity, which affect the growth and quality of the mushrooms. The development of an automatic temperature and humidity control system plays a crucial role in addressing these issues by utilizing sensor technology to monitor and adjust environmental conditions with precision. This helps enhance production efficiency, reduce human errors in manual control, and promote safe food production at the household level. Additionally, it helps lower production costs and supports the concept of sustainable living. The adoption of this technology is considered an important innovation in improving the quality of mushroom cultivation and increasing sustainability in food production.

Read more