KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

A DIGITAL TWIN OF AN AQUARIUM FOR MONITORING WATER QUALITY

A DIGITAL TWIN OF AN AQUARIUM FOR MONITORING WATER QUALITY

Abstract

This research presents a Digital Twin of an Aquarium for Water Quality Monitoring, developing a virtual model that displays real-time key water parameters, including pH level, temperature, flow rate, and dissolved oxygen. Sensor data is processed and visualized through a Graphical User Interface (GUI) to reflect the real-time status of the virtual aquarium. This system enables accurate water quality monitoring and analysis while reducing reliance on expensive software solutions.

Objective

มีเป้าหมายในการสร้าง Digital Twin ของตู้ปลา เพื่อใช้เป็นกรณีศึกษาในการตรวจสอบคุณภาพน้ำ โดยนำเซ็นเซอร์ตรวจวัด ค่าความเป็นกรด-ด่าง (pH), อุณหภูมิ, อัตราการไหลของน้ำ และออกซิเจนละลายน้ำ มาประมวลผลและแสดงผลผ่านอินเทอร์เฟซกราฟิกแบบเรียลไทม์ ระบบนี้สามารถใช้เป็นสื่อการสอนด้าน คอมพิวเตอร์ช่วยงานเทคโนโลยีการผลิต โดยไม่ต้องพึ่งพาซอฟต์แวร์ราคาแพง ซึ่งช่วยลดต้นทุนและเพิ่มโอกาสในการศึกษา Digital Twin อย่างมีประสิทธิภาพ

Other Innovations

Air Rack Cabinet with cooling system to control temperature inside the cabinet

วิทยาลัยการจัดการนวัตกรรมและอุตสาหกรรม

Air Rack Cabinet with cooling system to control temperature inside the cabinet

Air Rack is a product designed to address businesses with limited space and budget constraints for server rooms, cooling systems, and noise management. This system enables efficient use of IT equipment in open spaces, supporting both On-premise and On-cloud operations. It converts sensor data into digital information and displays it via a Dashboard, allowing users to monitor, analyze, and control the system remotely. Additionally, Air Rack significantly reduces power consumption and the costs associated with traditional server room management.

Read more
Artificial intelligence of things system for monitoring and controlling irrigation using weather information

วิทยาเขตชุมพรเขตรอุดมศักดิ์

Artificial intelligence of things system for monitoring and controlling irrigation using weather information

This research focuses on the design and development of a prototype Artificial Intelligence of Things (AIoT) system for monitoring and controlling irrigation using weather information. The system consists of four main components: 1) Weather Station – This component includes various sensors such as air temperature, relative humidity, wind speed, and sunlight duration, among others, to collect real-time weather data. 2) Controller Unit – This unit is equipped with machine learning algorithms or models to estimate the reference evapotranspiration (ETo) and calculate the plant’s water requirement by integrating the crop coefficient (Kc) with other plant-related data. This enables the system to determine the optimal irrigation amount based on plant needs automatically. 3) User Interface (UI) and Display – This section allows farmers or users to input relevant information, such as plant type, soil type, irrigation system type, number of water emitters, planting distance, and growth stages. It also provides a display for monitoring and interaction with the system. 4) Irrigation Unit – This component is responsible for controlling the water supply and managing the irrigation emitters to ensure efficient water distribution based on the calculated requirements.

Read more
Productivity Improvement in Warehouse Using Power BI and Power Automate

คณะวิศวกรรมศาสตร์

Productivity Improvement in Warehouse Using Power BI and Power Automate

This cooperative education project aims to enhance speed and facilitate the verification process for stock issuance, transfers, distributions, and receipts in the warehouse. The primary focus is to address issues related to wasted time and delays in operational processes. Through analysis, it was found that SAP, the current system, involves complex processes requiring specialized expertise. Although the company has developed the iWarehouse system to improve efficiency, delays and procedural complexity persist. To resolve these challenges, Power BI was utilized to visualize data related to stock issuance, transfers, distributions, and receipts, allowing warehouse staff to work more efficiently by minimizing waste and accelerating processes. Additionally, Power Automate was integrated to automate the processing of received stock numbers from emails, reducing errors and delays caused by manual data entry. The results of this improvement indicate a significant increase in employee efficiency and a noticeable reduction in wasted time. Upon project completion, the findings and development approach will be provided to the company for further enhancement.

Read more