KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

Detection of Storage Age Adulteration in Khao Dawk Mali 105 Rice using Near-Infrared Spectroscopy

Detection of Storage Age Adulteration in Khao Dawk Mali 105 Rice  using Near-Infrared Spectroscopy

Abstract

This research aims to investigate the adulteration of Khao Dawk Mali 105 rice based on storage age using Near-Infrared Spectroscopy (NIRS) with Fourier Transform Near-Infrared Spectroscopy (FT-NIR) in the wavenumber range of 12,500 – 4,000 cm-1 (800 – 2,500 nm). Storage duration significantly impacts the quality of cooked rice. This research is divided into two parts: 1) to investigate the feasibility of separating rice according to storage age (1, 2, and 3 years) using the best model created by an Ensemble method combined with Second Derivative, which achieved an accuracy of 96.3%. 2) To investigate adulteration based on storage age by adulterating at 0% (all 2- and 3-year-old rice), 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100% (all 1-year-old rice). The best model was created using Gaussian Process Regression (GPR) combined with Smoothing + Multiplicative Scatter Correction (MSC), with coefficients of determination (r²), root mean square error of prediction (RMSEP), bias, and prediction ability (RPD) values of 0.92, 8.6%, 0.9%, and 3.6 respectively. This demonstrates that the adulteration model can be applied to separate rice by storage age (1, 2, and 3 years). Additionally, the color values of rice with different storage ages show differences in L* and b* values.

Objective

โรงงานผู้ผลิตข้าวพบปัญหาการปลอมปนของข้าวสารที่มีอายุการเก็บรักษาต่างกัน โดยทั่วไปการคัดแยกการปลอมปนจะใช้วิธีมาตรฐานโดยการหุงข้าว จากนั้นนำข้าวหุงสุกไปวัดเนื้อสัมผัสเพื่อแยกอายุของข้าว ซึ่งใช้เวลาและเป็นการทำลายตัวอย่างและเกิดความล่าช้าในการตรวจสอบคุณภาพข้าวสาร งานวิจัยนี้ใช้เทคนิคเนียร์อินฟราเรดสเปกโทรสโกปี (Near-Infrared Spectroscopy, NIRS) ในการตรวจสอบการปลอมปนของข้าวสารพันธุ์ขาวดอกมะลิ 105 (KDML 105) ที่อายุการเก็บรักษาต่างกันเพื่อแก้ไขปัญหาดังกล่าว

Other Innovations

Application of Machine Learning, Stochastic Process, and Game Theory in Short-Term Financial Asset Investment Strategies

คณะวิทยาศาสตร์

Application of Machine Learning, Stochastic Process, and Game Theory in Short-Term Financial Asset Investment Strategies

This project focuses on the study and development of a short-term investment framework via gold trading in the foreign exchange market. Machine learning techniques are applied to analyze and forecast pricing trends. Moreover, we develop the system using a stochastic process to determine optimal stop-loss points, with the aim of maximizing expected returns. Additionally, we apply game theory to guide the decision-making process regarding order holding or closure. The system is implemented and tested on the MetaTrader 5 (MT5) platform. This project outlined the clear process that includes data preparation, machine learning model training, probabilistic modeling of gold price movements, stop-loss strategy formulation, strategic decision modeling based on game theory, the development of an automated trading program, and backtesting to evaluate system performance.

Read more
-

คณะวิศวกรรมศาสตร์

-

-

Read more
Niyom Thai

คณะศิลปศาสตร์

Niyom Thai

"Niyom Thai" represents health-centric footwear adorned with traditional Thai patterns, embodying an innovative approach to sustainable development tailored to the current needs of local communities. These shoes utilize natural materials to mitigate fatigue and integrate safety technologies, including location tracking via a mobile application and heart rate monitoring. This addresses the aspects of convenience and well-being in both daily life and travel

Read more