KMITL Innovation Expo 2025 Logo

Detection of Storage Age Adulteration in Khao Dawk Mali 105 Rice using Near-Infrared Spectroscopy

Detection of Storage Age Adulteration in Khao Dawk Mali 105 Rice  using Near-Infrared Spectroscopy

Abstract

This research aims to investigate the adulteration of Khao Dawk Mali 105 rice based on storage age using Near-Infrared Spectroscopy (NIRS) with Fourier Transform Near-Infrared Spectroscopy (FT-NIR) in the wavenumber range of 12,500 – 4,000 cm-1 (800 – 2,500 nm). Storage duration significantly impacts the quality of cooked rice. This research is divided into two parts: 1) to investigate the feasibility of separating rice according to storage age (1, 2, and 3 years) using the best model created by an Ensemble method combined with Second Derivative, which achieved an accuracy of 96.3%. 2) To investigate adulteration based on storage age by adulterating at 0% (all 2- and 3-year-old rice), 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100% (all 1-year-old rice). The best model was created using Gaussian Process Regression (GPR) combined with Smoothing + Multiplicative Scatter Correction (MSC), with coefficients of determination (r²), root mean square error of prediction (RMSEP), bias, and prediction ability (RPD) values of 0.92, 8.6%, 0.9%, and 3.6 respectively. This demonstrates that the adulteration model can be applied to separate rice by storage age (1, 2, and 3 years). Additionally, the color values of rice with different storage ages show differences in L* and b* values.

Objective

โรงงานผู้ผลิตข้าวพบปัญหาการปลอมปนของข้าวสารที่มีอายุการเก็บรักษาต่างกัน โดยทั่วไปการคัดแยกการปลอมปนจะใช้วิธีมาตรฐานโดยการหุงข้าว จากนั้นนำข้าวหุงสุกไปวัดเนื้อสัมผัสเพื่อแยกอายุของข้าว ซึ่งใช้เวลาและเป็นการทำลายตัวอย่างและเกิดความล่าช้าในการตรวจสอบคุณภาพข้าวสาร งานวิจัยนี้ใช้เทคนิคเนียร์อินฟราเรดสเปกโทรสโกปี (Near-Infrared Spectroscopy, NIRS) ในการตรวจสอบการปลอมปนของข้าวสารพันธุ์ขาวดอกมะลิ 105 (KDML 105) ที่อายุการเก็บรักษาต่างกันเพื่อแก้ไขปัญหาดังกล่าว

Other Innovations

COSTS RETURNS OF RICE CULTIVATION USING CHEMICAL PESTICIDES AND RICE CULTIVATION USING BIOPRODUCTS IN COMBINATION WITH CHEMICAL PESTICIDES BY FARMERS IN BANG PHLI NOI SUBDISTRICT BANG BO DISTRICT SAMUT PRAKAN PROVINCE

คณะเทคโนโลยีการเกษตร

COSTS RETURNS OF RICE CULTIVATION USING CHEMICAL PESTICIDES AND RICE CULTIVATION USING BIOPRODUCTS IN COMBINATION WITH CHEMICAL PESTICIDES BY FARMERS IN BANG PHLI NOI SUBDISTRICT BANG BO DISTRICT SAMUT PRAKAN PROVINCE

During this cooperative education program at the Bang Bo District Agricultural Office, Samut Prakan Province, a study was conducted on the costs and returns of rice cultivation using chemical inputs compared to using biopesticides in combination with chemical inputs among farmers in Bang Phli Noi Subdistrict, Bang Bo District, Samut Prakan Province.The objectives of this study were: To examine the costs and returns of rice cultivation using chemical inputs compared to using biopesticides in combination with chemical inputs among farmers in Bang Phli Noi Subdistrict, Bang Bo District, Samut Prakan Province. To explore the challenges of using biopesticides in rice cultivation among farmers in Bang Phli Noi Subdistrict, Bang Bo District, Samut Prakan Province. The study found that in the 2024/25 growing season, the total production cost for rice cultivation using biopesticides in combination with chemical inputs was 5,099.50 THB per rai, consisting of variable costs of 4,432.50 THB per rai and fixed costs of 667.00 THB per rai. Meanwhile, the total production cost for rice cultivation using only chemical inputs was 5,129.00 THB per rai, consisting of variable costs of 4,390.00 THB per rai and fixed costs of 739.00 THB per rai. The cost difference between the two methods was 114.50 THB per rai. Regarding the returns on rice cultivation in the 2024/25 growing season, the field using biopesticides in combination with chemical inputs yielded 1,000.00 kilograms per rai, with an average selling price of 8,500.00 THB per rai. Farmers earned a total revenue of 8,585.00 THB per rai and a profit of 3,485.50 THB per rai. On the other hand, the field using only chemical inputs yielded 1,000.00 kilograms per rai, with an average selling price of 8,500.00 THB per rai. Farmers earned a total revenue of 8,500.00 THB per rai and a profit of 3,371.00 THB per rai. The total income difference between the two cultivation methods was 114.50 THB per rai. In terms of challenges related to the procurement of biopesticides, it was found that biopesticides are difficult to obtain, with limited or no availability in certain areas. Additionally, relevant agencies do not provide continuous support for biopesticides, making this the most significant issue. Regarding the use of biopesticides, the most critical challenge is that once fresh biopesticides are mixed, they must be used immediately and cannot be stored, as their effectiveness deteriorates over time.

Read more
Telemedicine App

คณะวิศวกรรมศาสตร์

Telemedicine App

Telemedicine App is a prototype system that provides basic functions for communicating diagnosis between patients, nurses, and doctors via video conferencing. The system is contains different diagnostic room and it allows recording patient information. It is an open source for others to extend for further development.

Read more
Effective Removal of Dental Biofilm from Periodontal Pathogens Using DNase I and Engineered Human Antimicrobial Peptide D-LL-31: A Potential Mouthwash Solution

คณะทันตแพทยศาสตร์

Effective Removal of Dental Biofilm from Periodontal Pathogens Using DNase I and Engineered Human Antimicrobial Peptide D-LL-31: A Potential Mouthwash Solution

Aggregatibacter actinomycetemcomitans is a key pathogen in periodontal disease, damaging periodontal ligaments and alveolar bone through biofilm formation. D-LL-31, an engineered antimicrobial peptide, exhibits superior biofilm-killing ability compared to conventional treatments, while DNase I enhances its efficacy by disrupting the biofilm matrix. This study evaluated the combined effects of D-LL-31 and DNase I on A. actinomycetemcomitans biofilms. Results showed that D-LL-31 effectively eradicated biofilms, and its combination with DNase I further enhanced biofilm disruption without cytotoxicity to gingival epithelial cells. The D-LL-31 and DNase I combination shows potential for development as a mouthwash to improve oral health and combat periodontal disease.

Read more