
This research aims to investigate the adulteration of Khao Dawk Mali 105 rice based on storage age using Near-Infrared Spectroscopy (NIRS) with Fourier Transform Near-Infrared Spectroscopy (FT-NIR) in the wavenumber range of 12,500 – 4,000 cm-1 (800 – 2,500 nm). Storage duration significantly impacts the quality of cooked rice. This research is divided into two parts: 1) to investigate the feasibility of separating rice according to storage age (1, 2, and 3 years) using the best model created by an Ensemble method combined with Second Derivative, which achieved an accuracy of 96.3%. 2) To investigate adulteration based on storage age by adulterating at 0% (all 2- and 3-year-old rice), 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100% (all 1-year-old rice). The best model was created using Gaussian Process Regression (GPR) combined with Smoothing + Multiplicative Scatter Correction (MSC), with coefficients of determination (r²), root mean square error of prediction (RMSEP), bias, and prediction ability (RPD) values of 0.92, 8.6%, 0.9%, and 3.6 respectively. This demonstrates that the adulteration model can be applied to separate rice by storage age (1, 2, and 3 years). Additionally, the color values of rice with different storage ages show differences in L* and b* values.
โรงงานผู้ผลิตข้าวพบปัญหาการปลอมปนของข้าวสารที่มีอายุการเก็บรักษาต่างกัน โดยทั่วไปการคัดแยกการปลอมปนจะใช้วิธีมาตรฐานโดยการหุงข้าว จากนั้นนำข้าวหุงสุกไปวัดเนื้อสัมผัสเพื่อแยกอายุของข้าว ซึ่งใช้เวลาและเป็นการทำลายตัวอย่างและเกิดความล่าช้าในการตรวจสอบคุณภาพข้าวสาร งานวิจัยนี้ใช้เทคนิคเนียร์อินฟราเรดสเปกโทรสโกปี (Near-Infrared Spectroscopy, NIRS) ในการตรวจสอบการปลอมปนของข้าวสารพันธุ์ขาวดอกมะลิ 105 (KDML 105) ที่อายุการเก็บรักษาต่างกันเพื่อแก้ไขปัญหาดังกล่าว

คณะสถาปัตยกรรม ศิลปะและการออกแบบ
The thesis artwork titled “The Red Mist” presents a narrative adapted from a short story of the same name by Assistant Professor Chatnarong Wisutkul in 2003. The story is set in a future world where people's greed and selfishness have led to a war, forcing them to rely on "breathing machines" to survive in the "red toxic mist." Phakin, a 15-year-old boy, embarks on a journey with a group of refugees. As they pass through abandoned cities, they encounter a boy without a breathing machine who has recently lost his father. Phakin decides to help him, despite objections from others. The boy tries to end his life by shutting off his breathing machine, and when Phakin intervenes to save him, he collapses from inhaling the toxic air. Witnessing Phakin's selfless act, the others are moved and join forces to save both of them. Phakin demonstrates that in difficult times, humans must cooperate and help each other rather than being divided and selfish.

คณะวิศวกรรมศาสตร์
Artificial intelligence for agriculture and environment is a collection of significant models for enviromental friendly Thailand development. The models create with machine learning and deep learning by Near infrared spectroscopy research center for agricultural and food products, including: Determining the nutrient needs (N P K) of durian trees by measuring durian leaves using a non-destructive technique using artificial intelligence, Identification of combustion properties of biomass from fast-growing trees and agricultural residues using non-destructive techniques combined with artificial intelligence, and Evaluation of global warming due to biomass combustion using non-destructive techniques using artificial intelligence. The basic technology used is Near infrared Fourier transform spectroscopy technology which measurement and output display can be done quickly without chemical, no requirement for special expert, and measurement price per sample is very low. But the instrument cannot be produced in Thailand.

คณะเทคโนโลยีสารสนเทศ
Traditional methods of public relations and learning often lack engagement and fail to provide users with a deep and immersive experience. Additionally, these methods struggle to reach a wide audience, especially those unable to visit the physical location. This project aims to solve the issues of accessibility and awareness regarding the institution’s Chalermphrakiat Hall and historical exhibition. Utilizing metaverse technology to simulate important locations allows users to explore the site and view key information in a virtual format, thereby enhancing the engagement of students staff alumni and the general public. The metaverse system is developed using Unity, a powerful game engine capable of supporting the creation of metaverse environments. This allows for the creation of an interactive and realistic virtual space. Unity also supports the management of physics, lighting, and sound, further enhancing realism. Additionally, the system is integrated with web browsers using WebGL technology, enabling the project developed in Unity to be accessed directly through a browser. Users can visit and interact with the metaverse environment from anywhere without the need to install additional software. The developers have thus created the metaverse system to provide a realistic and engaging learning experience, enhancing public relations efforts and fostering a strong connection with the institution efficiently.