
This research aims to investigate the adulteration of Khao Dawk Mali 105 rice based on storage age using Near-Infrared Spectroscopy (NIRS) with Fourier Transform Near-Infrared Spectroscopy (FT-NIR) in the wavenumber range of 12,500 – 4,000 cm-1 (800 – 2,500 nm). Storage duration significantly impacts the quality of cooked rice. This research is divided into two parts: 1) to investigate the feasibility of separating rice according to storage age (1, 2, and 3 years) using the best model created by an Ensemble method combined with Second Derivative, which achieved an accuracy of 96.3%. 2) To investigate adulteration based on storage age by adulterating at 0% (all 2- and 3-year-old rice), 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100% (all 1-year-old rice). The best model was created using Gaussian Process Regression (GPR) combined with Smoothing + Multiplicative Scatter Correction (MSC), with coefficients of determination (r²), root mean square error of prediction (RMSEP), bias, and prediction ability (RPD) values of 0.92, 8.6%, 0.9%, and 3.6 respectively. This demonstrates that the adulteration model can be applied to separate rice by storage age (1, 2, and 3 years). Additionally, the color values of rice with different storage ages show differences in L* and b* values.
โรงงานผู้ผลิตข้าวพบปัญหาการปลอมปนของข้าวสารที่มีอายุการเก็บรักษาต่างกัน โดยทั่วไปการคัดแยกการปลอมปนจะใช้วิธีมาตรฐานโดยการหุงข้าว จากนั้นนำข้าวหุงสุกไปวัดเนื้อสัมผัสเพื่อแยกอายุของข้าว ซึ่งใช้เวลาและเป็นการทำลายตัวอย่างและเกิดความล่าช้าในการตรวจสอบคุณภาพข้าวสาร งานวิจัยนี้ใช้เทคนิคเนียร์อินฟราเรดสเปกโทรสโกปี (Near-Infrared Spectroscopy, NIRS) ในการตรวจสอบการปลอมปนของข้าวสารพันธุ์ขาวดอกมะลิ 105 (KDML 105) ที่อายุการเก็บรักษาต่างกันเพื่อแก้ไขปัญหาดังกล่าว

คณะศิลปศาสตร์
As a value-added product of locally sourced fruits in Phang Nga, stevia-sweetened jelly offers a healthy and sustainable option for consumers seeking reduced sugar intake. This product has the potential to become a popular souvenir, promoting local agriculture and boosting the regional economy.

คณะศิลปศาสตร์
"Niyom Thai" represents health-centric footwear adorned with traditional Thai patterns, embodying an innovative approach to sustainable development tailored to the current needs of local communities. These shoes utilize natural materials to mitigate fatigue and integrate safety technologies, including location tracking via a mobile application and heart rate monitoring. This addresses the aspects of convenience and well-being in both daily life and travel

คณะวิศวกรรมศาสตร์
This thesis presents the application of deep learning for object classification. The selected deep learning architectures studied include Convolutional Neural Networks (CNN) and ResNet18. It covers data preparation, feature extraction, parameter tuning for accuracy comparison, and performance evaluation of the selected models. The aim is to propose an efficient model for use in devices that assist visually impaired individuals in classifying indoor objects and providing sound alerts.