KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

Detection of Storage Age Adulteration in Khao Dawk Mali 105 Rice using Near-Infrared Spectroscopy

Detection of Storage Age Adulteration in Khao Dawk Mali 105 Rice  using Near-Infrared Spectroscopy

Abstract

This research aims to investigate the adulteration of Khao Dawk Mali 105 rice based on storage age using Near-Infrared Spectroscopy (NIRS) with Fourier Transform Near-Infrared Spectroscopy (FT-NIR) in the wavenumber range of 12,500 – 4,000 cm-1 (800 – 2,500 nm). Storage duration significantly impacts the quality of cooked rice. This research is divided into two parts: 1) to investigate the feasibility of separating rice according to storage age (1, 2, and 3 years) using the best model created by an Ensemble method combined with Second Derivative, which achieved an accuracy of 96.3%. 2) To investigate adulteration based on storage age by adulterating at 0% (all 2- and 3-year-old rice), 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100% (all 1-year-old rice). The best model was created using Gaussian Process Regression (GPR) combined with Smoothing + Multiplicative Scatter Correction (MSC), with coefficients of determination (r²), root mean square error of prediction (RMSEP), bias, and prediction ability (RPD) values of 0.92, 8.6%, 0.9%, and 3.6 respectively. This demonstrates that the adulteration model can be applied to separate rice by storage age (1, 2, and 3 years). Additionally, the color values of rice with different storage ages show differences in L* and b* values.

Objective

โรงงานผู้ผลิตข้าวพบปัญหาการปลอมปนของข้าวสารที่มีอายุการเก็บรักษาต่างกัน โดยทั่วไปการคัดแยกการปลอมปนจะใช้วิธีมาตรฐานโดยการหุงข้าว จากนั้นนำข้าวหุงสุกไปวัดเนื้อสัมผัสเพื่อแยกอายุของข้าว ซึ่งใช้เวลาและเป็นการทำลายตัวอย่างและเกิดความล่าช้าในการตรวจสอบคุณภาพข้าวสาร งานวิจัยนี้ใช้เทคนิคเนียร์อินฟราเรดสเปกโทรสโกปี (Near-Infrared Spectroscopy, NIRS) ในการตรวจสอบการปลอมปนของข้าวสารพันธุ์ขาวดอกมะลิ 105 (KDML 105) ที่อายุการเก็บรักษาต่างกันเพื่อแก้ไขปัญหาดังกล่าว

Other Innovations

Team Member Work Tracking System

วิทยาเขตชุมพรเขตรอุดมศักดิ์

Team Member Work Tracking System

This project focuses on developing a work tracking system for team members. Python is used to extract data from Excel files and import it into a SQL Server database for systematic data management. The system includes a function to notify task status via LINE and displays reports via Power BI, allowing supervisors to track progress and evaluate team members' performance efficiently. Additionally, the system helps promote work and time management skills for team members.

Read more
A dual coil induction heating machine for jewelry factories developed by  electromagnetic analysis

วิทยาลัยนวัตกรรมการผลิตขั้นสูง

A dual coil induction heating machine for jewelry factories developed by electromagnetic analysis

Induction Heating Machine (IHM) is a crucial device in the jewelry industry, utilizing electromagnetic fields to generate heat and join precious metals. This research focuses on developing a Dual Coil Induction Heating Machine (Dual Coil IHM) to enhance production efficiency and reduce costs in jewelry factories using Electromagnetic Analysis (EMA) through Ansys Maxwell software. The research process began with testing a single-coil IHM under real operating conditions and using EMA to analyze the generated magnetic flux density (B). Subsequently, dual-coil configurations in Parallel and Series arrangements were designed and compared. The experimental results revealed that the series dual coil produced a higher magnetic flux and allowed for optimizing current (I), frequency (f), number of coil turns (N), and coil spacing (d) for better manufacturing performance. The findings indicate that the series dual-coil IHM can double production capacity compared to the conventional single-coil model. Furthermore, EMA technology minimizes physical testing, reduces errors, and enhances precision in designing industrial machinery for the jewelry manufacturing sector.

Read more
Rotten Fruit Classification for Industrial

คณะวิทยาศาสตร์

Rotten Fruit Classification for Industrial

The development of a fruit spoilage detection system originates from the need to reduce agricultural product losses, a global issue affecting both the agricultural and food distribution industries. Spoiled fruit can negatively impact product quality and result in significant economic losses. The primary goal of this system is to assist in screening and removing unsuitable fruit from the supply chain, thereby preserving product quality and meeting consumer demands for fresh produce. The system was designed to simulate the sorting process by utilizing images as a key factor in detecting spoiled fruit. Experimental results demonstrated high efficiency and rapid prediction capabilities, highlighting the system’s potential for practical applications.

Read more