KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

Stirling Engine System for Green Energy

Stirling Engine System for Green Energy

Abstract

Stirling engine is the external heated engine that heat is sup-plied externally to the heater part of the engine. Thus, Stirling cycle engine can be employed with various sources of renewable energy such as biomass, biofuel, solar energy, geothermal energy, recovery heat, and waste. The integration of gasifier, burner, and heat engine as a power system offers more fuel choices of each local area with potential resources resulting independent from shortage and cost fluctuation of fossil fuel. This research aims to investigate the integration of the Stirling engine with a wood pellet gasifier for electric power generation. Biomass can be controlled to have continuously combustion with ultra-low toxic emission. Stirling engine, therefore, is a promising alternative in small-scale-electricity production. Even though many biomass-powered Stirling engines were successfully constructed and marketed but these engines and the use of biomass resources as fuel for power generation are quite new concepts in some developing countries. Especially, the capital cost of this engine is high and unaffordable for installation compared to other power systems. Therefore, this research aims to the study attractive and feasibility of the compact Stirling engine with green energy.

Objective

เนื่องจากความต้องการพลังงานที่มีมากขึ้น แต่เชื้อเพลิงฟอสซิลซึ่งเป็นแหล่งพลังงานหลักมีอยู่อย่างจำกัดและเป็นสาเหตุหนึ่งของมลพิษและภาวะโลกร้อน ดังนั้นพลังงานทางเลือกจึงเป็นกุญแจสำคัญเพื่อความยั่งยืนด้านพลังงาน ประเทศไทยมีศักยภาพของพลังงานชีวมวลจากเกษตรกรรม ดังนั้นการพัฒนาระบบผลิตไฟฟ้าที่มลพิษต่ำและสามารถใช้ได้กับแหล่งพลังงานทดแทนจึงจำเป็นอย่างยิ่ง โดยเฉพาะเครื่องยนต์สเตอร์ลิงซึ่งมีโครงสร้างชิ้นส่วนไม่ซับซ้อน ปราศจากการสันดาปภายในเครื่องยนต์จึงเป็นเครื่องยนต์ที่มีศักยภาพผลิตไฟฟ้าด้วยพลังงานสะอาดและเป็นมิตรกับสิ่งแวดล้อมและความสำเร็จของโรงไฟฟ้าเครื่องยนต์สเตอร์ลิง ในประเทศไทย เพื่อคนไทย

Other Innovations

Designing a portable and sound-confining space

วิทยาลัยวิศวกรรมสังคีต

Designing a portable and sound-confining space

This project studies how to design a portable, sound-confining space that allows users to practice using their voices without disturbing the surroundings.

Read more
DISPOSABLE AND LOW-COST GOLDLEAF ELECTRODE-DECORATED AuPt-Ru/RGO NANOCOMPOSITE FOR ULTRASENSITIVE ELECTROCHEMICAL APTASENSOR QUANTIFICATION OF  AFLATOXIN B1 IN AGRICULTURAL PRODUCTS

คณะวิทยาศาสตร์

DISPOSABLE AND LOW-COST GOLDLEAF ELECTRODE-DECORATED AuPt-Ru/RGO NANOCOMPOSITE FOR ULTRASENSITIVE ELECTROCHEMICAL APTASENSOR QUANTIFICATION OF AFLATOXIN B1 IN AGRICULTURAL PRODUCTS

With the urgent need for rapid screening of Aflatoxin B1 (AFB1) due to its association with increased liver cirrhosis and hepatocellular carcinoma cases from contaminated agricultural foods, we propose a novel electrochemical aptasensor. This aptasensor is based on trimetallic nanoparticles AuPt-Ru supported by reduced graphene oxide (AuPt-Ru/RGO) modified on a low-cost and disposable goldleaf electrode (GLEAuPt-Ru/RGO) for detection of AFB1. The trimetallic nanoparticle AuPt-Ru was synthesized using an ultrasonic-driven chemical reduction method. The synthesized AuPt-Ru exhibited a waxberry-like appearance, with AuPt core-shell structure and ruthenium dispersed over the particles. The average particle size was 57.35 ± 8.24 nm. The AuPt-Ru was integrated into RGO sheets (inner diameter of 0.5 to 1.6 µm) in order to enhance electron transfer efficiency and increase the specific immobilizing surface area of the thiol-5’-terminated modified aptamer (Apt) to target AFB1. With a large electrochemical surface area and low electrochemical impedance, GLEAuPt-Ru/RGO displays ultra-high sensitivity for AFB1 detection. Differential pulse voltammetry (DPV) measurements revealed a linear range for AFB1 detection range from 0.3 to 30.0 pg mL-1 (R2 = 0.9972), with a limit of detection (LOD, S/N = 3) and a limit of quantification (LOQ, S/N = 10) of 0.009 pg mL-1 and 0.031 pg mL-1, respectively. The developed aptasensor also demonstrated excellent accuracy in real agricultural products, including dried red chili, garlic, peanut, pepper, and Thai jasmine rice, achieving recovery rates between 94.6 and 107.9%. The fabricated aptamer-based GLEAuPt-Ru/RGO performance is comparable to that of a modified commercial electrode, which has great potential application prospects for detecting AFB1 in agricultural products.

Read more
A Comparison of The Performance of Machine Learning Methods on Time Series Data Using Lagged Time Intervals

คณะวิทยาศาสตร์

A Comparison of The Performance of Machine Learning Methods on Time Series Data Using Lagged Time Intervals

This special problem aims to compare the performance of machine learning methods in time series forecasting using lagged time periods as independent variables. The lagged periods are categorized into three groups: lagged by 10 units, lagged by 15 units, and lagged by 20 units. The study employs four machine learning methods: Decision Tree (DT), Random Forest (RF), K-Nearest Neighbors (KNN), and Support Vector Machine (SVM). The time series data simulated as independent variables diverse including characteristics: Random Walk data, Trending data, and Non-Linear data, with sample sizes of 100, 300, 500, and 700. The research methodology involves splitting the data into 90% for training and 10% for testing. Simulations and analysis are performed using the R programming language, with 1,000 iterations conducted. The results are evaluated based on the average mean squared error (AMSE) and the average mean absolute percentage error (AMAPE) are calculated to identify the best performing method. The research findings revealed that for Random Walk data, the best performing methods are Random Forest and Support Vector Machine. For Trend data, the best performing methods are Random Forest. For Non-Linear data, the best performing methods are Support Vector Machine. When tested with real-world data, the results show that for the Euro-to-Thai Baht exchange rate, the best methods are Random Forest and Support Vector Machine. For the S&P 500 Index in USD, the best performing methods are Random Forest. For the Bank of America Corp Index in USD, the best performing methods are Support Vector Machine.

Read more