KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

Stirling Engine System for Green Energy

Stirling Engine System for Green Energy

Abstract

Stirling engine is the external heated engine that heat is sup-plied externally to the heater part of the engine. Thus, Stirling cycle engine can be employed with various sources of renewable energy such as biomass, biofuel, solar energy, geothermal energy, recovery heat, and waste. The integration of gasifier, burner, and heat engine as a power system offers more fuel choices of each local area with potential resources resulting independent from shortage and cost fluctuation of fossil fuel. This research aims to investigate the integration of the Stirling engine with a wood pellet gasifier for electric power generation. Biomass can be controlled to have continuously combustion with ultra-low toxic emission. Stirling engine, therefore, is a promising alternative in small-scale-electricity production. Even though many biomass-powered Stirling engines were successfully constructed and marketed but these engines and the use of biomass resources as fuel for power generation are quite new concepts in some developing countries. Especially, the capital cost of this engine is high and unaffordable for installation compared to other power systems. Therefore, this research aims to the study attractive and feasibility of the compact Stirling engine with green energy.

Objective

เนื่องจากความต้องการพลังงานที่มีมากขึ้น แต่เชื้อเพลิงฟอสซิลซึ่งเป็นแหล่งพลังงานหลักมีอยู่อย่างจำกัดและเป็นสาเหตุหนึ่งของมลพิษและภาวะโลกร้อน ดังนั้นพลังงานทางเลือกจึงเป็นกุญแจสำคัญเพื่อความยั่งยืนด้านพลังงาน ประเทศไทยมีศักยภาพของพลังงานชีวมวลจากเกษตรกรรม ดังนั้นการพัฒนาระบบผลิตไฟฟ้าที่มลพิษต่ำและสามารถใช้ได้กับแหล่งพลังงานทดแทนจึงจำเป็นอย่างยิ่ง โดยเฉพาะเครื่องยนต์สเตอร์ลิงซึ่งมีโครงสร้างชิ้นส่วนไม่ซับซ้อน ปราศจากการสันดาปภายในเครื่องยนต์จึงเป็นเครื่องยนต์ที่มีศักยภาพผลิตไฟฟ้าด้วยพลังงานสะอาดและเป็นมิตรกับสิ่งแวดล้อมและความสำเร็จของโรงไฟฟ้าเครื่องยนต์สเตอร์ลิง ในประเทศไทย เพื่อคนไทย

Other Innovations

SignGen: An LLM-Based Thai Sign Language Generator

คณะวิศวกรรมศาสตร์

SignGen: An LLM-Based Thai Sign Language Generator

The Thai Sign Language Generation System aims to create a comprehensive 3D modeling and animation platform that translates Thai sentences into dynamic and accurate representations of Thai Sign Language (TSL) gestures. This project enhances communication for the Thai deaf community by leveraging a landmark-based approach using a Vector Quantized Variational Autoencoder (VQVAE) and a Large Language Model (LLM) for sign language generation. The system first trains a VQVAE encoder using landmark data extracted from sign videos, allowing it to learn compact latent representations of TSL gestures. These encoded representations are then used to generate additional landmark-based sign sequences, effectively expanding the training dataset using the BigSign ThaiPBS dataset. Once the dataset is augmented, an LLM is trained to output accurate landmark sequences from Thai text inputs, which are then used to animate a 3D model in Blender, ensuring fluid and natural TSL gestures. The project is implemented using Python, incorporating MediaPipe for landmark extraction, OpenCV for real-time image processing, and Blender’s Python API for 3D animation. By integrating AI, VQVAE-based encoding, and LLM-driven landmark generation, this system aspires to bridge the communication gap between written Thai text and expressive TSL gestures, providing the Thai deaf community with an interactive, real-time sign language animation platform.

Read more
Study of the physical properties of plant-based burger from chickpea and red bean

คณะอุตสาหกรรมอาหาร

Study of the physical properties of plant-based burger from chickpea and red bean

In recent years, many people have shown greater interest in plant-based proteins because of their health benefits and lower impact on the environment. This study will look at the physical and chemical properties of chickpeas and red beans. It will also create a plant-based burger that tastes and feels similar to meat-based burgers while providing comparable nutrition. We will steam the ingredients and then analyze important properties such as texture, color, water activity (aW), pH, and how well they retain water and oil. Additionally, we will conduct a sensory evaluation to understand consumer preferences.

Read more
Characteristics and nutrition values of cereal bar fortified with Asian sea bass bone bio-calcium powder.

คณะอุตสาหกรรมอาหาร

Characteristics and nutrition values of cereal bar fortified with Asian sea bass bone bio-calcium powder.

Bio-calcium powders were extracted from Asian sea bass bone by heat-treated alkaline with fat removal and bleaching supplementary method. Cereal bars (CBs) were fortified with produced bio-calcium at 3 levels: (1) increased calcium (IS-Ca; calcium ≥10% Thai RDI), (2) good source of calcium (GS-Ca; calcium ≥15% Thai RDI), and (3) high calcium (H-Ca; calcium ≥30% Thai RDI) which were consistent with the notification of the Ministry of Public Health, Thailand: No. 445; Nutrition claim issued in B.E. 2023. Moisture content, water activity, color, calcium content and FTIR analysis of bio-calcium powders were measured. Dimension, color, water activity, pH and texture of fortified CBs were determined. Produced bio-calcium could be classified as a dried food with light yellow-white color. Calcium contents in bio-calcium powder was 23.4% (w/w). Dimension, weight and color except b* and ΔE* values of fortified CBs were not different (P > 0.05) from those of the control. Fortifying of bio-calcium resulted in harder texture CBs. An increase of fortified bio-calcium amounts decreased carbohydrate and fat but increased of protein, ash and calcium in the fortified CBs. Shelf life of CBs was to be shorten by fortification of bio-calcium powder because of the increment of moisture, water activity and pH. Yield of bio-calcium production was 40.30%. Production cost of bio-calcium was approximately 7,416 Bth/kg while cost of fortified CBs increased almost 2-3 times compared to the control. Calcium contents in IS-Ca (921.12 mg/100g), GS-Ca (1,287.10 mg/100g) and H-Ca (2,639.70 mg/100g) cereal bars could be claimed as increased calcium, good source of calcium and high calcium, respectively. In conclusion, production of cereal bar fortified with Asian sea bass bone bio-calcium powder as a fortified food was possible. However, checking the remained hazardous reagents in bio-calcium powder must be carried out before using in food products and analysis of calcium bioavailability, sensory acceptance and shelf life of the developed products should be determined in further studies.

Read more