KMITL Expo 2026 LogoKMITL 66th Anniversary Logo

Stirling Engine System for Green Energy

Stirling Engine System for Green Energy

Abstract

Stirling engine is the external heated engine that heat is sup-plied externally to the heater part of the engine. Thus, Stirling cycle engine can be employed with various sources of renewable energy such as biomass, biofuel, solar energy, geothermal energy, recovery heat, and waste. The integration of gasifier, burner, and heat engine as a power system offers more fuel choices of each local area with potential resources resulting independent from shortage and cost fluctuation of fossil fuel. This research aims to investigate the integration of the Stirling engine with a wood pellet gasifier for electric power generation. Biomass can be controlled to have continuously combustion with ultra-low toxic emission. Stirling engine, therefore, is a promising alternative in small-scale-electricity production. Even though many biomass-powered Stirling engines were successfully constructed and marketed but these engines and the use of biomass resources as fuel for power generation are quite new concepts in some developing countries. Especially, the capital cost of this engine is high and unaffordable for installation compared to other power systems. Therefore, this research aims to the study attractive and feasibility of the compact Stirling engine with green energy.

Objective

เนื่องจากความต้องการพลังงานที่มีมากขึ้น แต่เชื้อเพลิงฟอสซิลซึ่งเป็นแหล่งพลังงานหลักมีอยู่อย่างจำกัดและเป็นสาเหตุหนึ่งของมลพิษและภาวะโลกร้อน ดังนั้นพลังงานทางเลือกจึงเป็นกุญแจสำคัญเพื่อความยั่งยืนด้านพลังงาน ประเทศไทยมีศักยภาพของพลังงานชีวมวลจากเกษตรกรรม ดังนั้นการพัฒนาระบบผลิตไฟฟ้าที่มลพิษต่ำและสามารถใช้ได้กับแหล่งพลังงานทดแทนจึงจำเป็นอย่างยิ่ง โดยเฉพาะเครื่องยนต์สเตอร์ลิงซึ่งมีโครงสร้างชิ้นส่วนไม่ซับซ้อน ปราศจากการสันดาปภายในเครื่องยนต์จึงเป็นเครื่องยนต์ที่มีศักยภาพผลิตไฟฟ้าด้วยพลังงานสะอาดและเป็นมิตรกับสิ่งแวดล้อมและความสำเร็จของโรงไฟฟ้าเครื่องยนต์สเตอร์ลิง ในประเทศไทย เพื่อคนไทย

Other Innovations

BottleBank - Automatic Waste Collection Bin for Plastic and Cans

คณะวิทยาศาสตร์

BottleBank - Automatic Waste Collection Bin for Plastic and Cans

This project presents the development of an automatic recycling machine for plastic bottles and cans, utilizing Machine Learning for packaging classification through image processing, integrated with smart sensor systems for quality inspection and operation control. The system connects to a Web Application for real-time monitoring and control. Once the packaging type is verified, the system automatically calculates the refund value and processes payment through e-wallet or issues cash vouchers. The system can be installed in public spaces to promote waste segregation at source, reduce contamination, and increase recycling efficiency. It also provides financial incentives to encourage public participation in waste management. This project demonstrates the potential of combining Machine Learning and smart sensor systems in developing accurate, convenient, and sustainable waste management solutions.

Read more
Blood Cell Classification

คณะวิศวกรรมศาสตร์

Blood Cell Classification

This project has been developed to address medical challenges related to the process of counting and classifying blood cells from samples, a task that requires both time and high precision. To reduce the workload of medical personnel, the developers have created a platform and an artificial intelligence (AI) system capable of automatically classifying and counting cells from sample images. This system is designed to assist medical laboratory technicians by enabling them to work more efficiently and accurately, reducing the time required for analysis. Furthermore, it promotes the advancement of medical technology, ensuring effective usability from classrooms and laboratories to hospitals.

Read more
Detection of Durian Leaf Diseases Using Image Analysis and Artificial Intelligence

คณะเทคโนโลยีการเกษตร

Detection of Durian Leaf Diseases Using Image Analysis and Artificial Intelligence

Durian is a crucial economic crop of Thailand and one of the most exported agricultural products in the world. However, producing high-quality durian requires maintaining the health of durian trees, ensuring they remain strong and disease-free to optimize productivity and minimize potential damage to both the tree and its fruit. Among the various diseases affecting durian, foliar diseases are among the most common and rapidly spreading, directly impacting tree growth and fruit quality. Therefore, monitoring and controlling leaf diseases is essential for preserving durian quality. This study aims to apply image analysis technology combined with artificial intelligence (AI) to classify diseases in durian leaves, enabling farmers to diagnose diseases independently without relying on experts. The classification includes three categories: healthy leaves (H), leaves infected with anthracnose (A), and leaves affected by algal spot (S). To develop the classification model, convolutional neural network (CNN) algorithms—ResNet-50, GoogleNet, and AlexNet—were employed. Experimental results indicate that the classification accuracy of ResNet-50, GoogleNet, and AlexNet is 93.57%, 93.95%, and 68.69%, respectively.

Read more